M EVVA源是金属蒸汽真空弧离子源的缩称。这是上世纪80年代中期由美国加州大学伯克利分校的布朗博士由于核物理研究的需要发明研制成功的。这种新型的强流金属离子源问世后很快就被应用于非半导体材料离子注入表面改性,并引起了强流金属离子注入的一场革命,这种独特的离子注入机被称为新一代金属离子注入机。
(1)对元素周期表上的固体金属元素(含碳)都能产生10毫安量级的强束流;
(2)离子纯度取决于阴极材料的纯度,因此可以达到很高的纯度,同时可以省去昂贵而复杂的质量分析器;
(3)金属离子一般有几个电荷态,这样可以用较低的引出电压得到较高的离子能量,而且用一个引出电压可实现几种能量的叠加(离子)注入;
(4)束流是发散的,可以省去束流约束与扫描系统而达到大的注入面积。其革命性主要有两个方面,一是它的高性能,另一是使离子注入机的结构大大简化,主要由离子源、靶室和真空系统这三部分组成。
在国家863计划的大力支持下,经过十多年的研究和开发,M EVVA源金属离子注入表面技术在硬件(设备)和软件(工艺)两方面均已取得了重要的突破和进展,并已具备了实现产业化的基础。在设备方面,完成了M EVVAIIA-H、MEVVAII-B和MEVVA50型3种不同型号M EVVA源的研制,主要性能达到国际先进水平。仅“九五”期间,就已先后为台湾地区、香港地区和国内大学研究所和工厂生产了15台M EVVA源离子注入机或M EVVA源镀膜设备。
M EVVA源离子注入机的应用,使强流金属离子注入变得更简便、更经济,效率大大提高,十分有利于这项技术的产业化。在表面优化工艺方面,钢制切削工具、模具和精密运动耦合部件3大类、7个品种的M EVVA源离子注入表面处理,取得了延寿3-30倍的显著优化效果,并已通过国家部委级技术鉴定,成果属国际先进水平。
这项表面处理技术的优越性、实用性及其广阔的市场前景已被越来越多的部门和单位所赏识,得到越来越广泛的应用。根据多年来的研究与开发,同时借鉴国际上的新进展,M EVVA源金属离子注入特别适用于以下几类工模具和零部件的表面处理:
(1)金属切削工具(包括各种用于精密加工和数控加工中使用的钻、铣、车、磨等工具和硬质合金工具),一般可以提高使用寿命3-10倍;
(2)热挤压和注塑模具,可使能耗降低20%左右,延长使用寿命10倍左右;
(3)精密运动耦合部件,如抽气泵定子和转子,陀螺仪的凸轮和卡板,活塞、轴承、齿轮、涡轮涡杆等,可大幅度地降低摩擦系数,提高耐磨性和耐蚀性,延长使用寿命最多可以达到100倍以上;
(4)挤压合成纤维和光导纤维的精密喷嘴,可以大大提高其抗磨蚀性和使用寿命;
(5)半导体工业中的精密模具,罐头工业中的压印和冲压模具等,可显著提高这些贵重、精密模具的工作寿命;
(6)医用矫形修复部件(如钛合金人工关节)和手术器具等,其经济效益和社会效益非常好。
这项高技术是一个方兴未艾的新兴产业,硬件设备的处理能力和效率有待进一步提高,在软件(离子注入材料表面改性技术)方面,也有待进一步深化和细化,其应用范围也有待不断扩大。
国内外发展概况美国的I SM Tech.公司是国际上生产M EVVA源离子注入机的专业公司,在综合技术水平上处于国际领先。上世纪90年代以来先后研制生产了几种不同类型的商用M EVVA源离子注入机。一种多M EVVA源离子注入机,在真空室里配备了4台AVIS80-75MEV- VA源,总束流可达300mA,总束斑面积可打12,000cm2,是世界上束流最强的M EVVA源离子注入机。欧美工业发达国家的离子注入表面处理技术这一新兴产业发展情况良好,如美国的S PIRE公司和ISM Tech.公司、英国的A EA Industrial Tech.,Tec Vac和Tech-Ni-Plant、法国的N itruvid和IBS、西班牙的INASMET和AIN、德国的M AT和丹麦D TI Tribology Centre等均已经取得了可观的经济效益和社会效益,起了很好的示范作用。他们已经将金属离子注入的费用降低到$0.05-0.5/cm2的水平,可以被包括医疗、航空、航天、机械等广泛的领域和部门所接受。
高能离子注入的优势
多样性:原则上任何元素都可以作为注入离子;形成的结构可不受热力学参数(扩散、溶解度等)限制;
不改变:不改变工件的原有尺寸和粗糙度等;适合于各类精密零件生产的最后一道工序;
牢固性:注入离子直接和材料表面原子或分子结合,形成改性层,改性层和基底材料没有清晰的界面,结合牢靠,不存在脱落的现象;
不受限:注入过程在材料温度低于零下、高到几百上千度都可以进行;可对那些普通方法不能处理的材料进行表面强化,如塑料、回火温度低的钢材等;
在电子工业中,离子注入成为了微电子工艺中的一种重要的掺杂技术,也是控制MOSFET阈值电压的一个重要手段。因此在当代制造大规模集成电路中,可以说是一种必不可少的手段。
离子注入的方法就是在真空中、低温下,把杂质离子加速(对Si,电压≥105 V),获得很大动能的杂质离子即可以直接进入半导体中;同时也会在半导体中产生一些晶格缺陷,因此在离子注入后需用低温进行退火或激光退火来消除这些缺陷。离子注入的杂质浓度分布一般呈现为高斯分布,并且浓度最高处不是在表面,而是在表面以内的一定深度处。
离子注入的优点是能精确控制杂质的总剂量、深度分布和面均匀性,而且是低温工艺(可防止原来杂质的再扩散等),同时可实现自对准技术(以减小电容效应)。
在工艺流程中,光刻的下一道工序就是刻蚀或离子注入。在做离子注入时,有光刻胶保护的地方,离子束无法穿透光刻胶;在没有光刻胶的地方离子束才能被注入到衬底中实现掺杂。因此,用于离子注入工艺的光刻胶必须要能有效地阻挡离子束 。
集成电路前道制程中有许多光刻层之后的工艺是离子注入(ion implantation),这些光刻层被称为离子注入光刻层(implant layers)。离子注入完成后,晶圆表面的光刻胶必须被清除掉,清除离子注入后的光刻胶是光刻工艺中的一个难点。对清除工艺的要求包括:
(1)干净彻底地去除衬底上的光刻胶;
(2)尽量避免衬底损伤表面,特别是离子注入区域(即没有光刻胶的区域);
(3)尽量避免对器件(如栅极的金属)造成伤害 。
钛的重要化合物主要包括氧化物、钛酸、偏钛酸及其盐,还有就是卤化物及含氧酸。氧化物: TiO2(自然界中称金红石,为红色或桃红色。纯净的TiO2称为钛白粉为白色) Ti2O3(紫色粉末,六方晶系结构...
会反应,生成白色的絮状物
1、安装操作前须看产品说明书。2、连接高压电源供应器的插座必须可靠接地。3、易燃易爆的环境下不可操作离子风枪。4、不得擅自进行修理。5、使用离子风枪要轻拿轻放。
离子注入技术又是近30年来在国际上蓬勃发展和广泛应用的一种材料表面改性技术。其基本原理是:用能量为100keV量级的离子束入射到材料中去,离子束与材料中的原子或分子将发生一系列物理的和化学的相互作用,入射离子逐渐损失能量,最后停留在材料中,并引起材料表面成分、结构和性能发生变化,从而优化材料表面性能,或获得某些新的优异性能。 此项技术由于其独特而突出的优点,已经在半导体材料掺杂,金属、陶瓷、高分子聚合物等的表面改性上获得了极为广泛的应用,取得了巨大的经济效益和社会效益。
非半导体材料离子注入表面改性研究对离子注入机提出了一些新的要求。半导体材料的离子注入所需的剂量(即单位面积上打进去了多少离子,单位是:离子/平方厘米)比较低,而所要求的纯度很高。非半导体材料离子注入表面改性研究所需的剂量很高(比半导体材料离子注入高1000倍以上),而纯度不要求像半导体那么高。
在非半导体材料离子注入表面改性研究的初始阶段,主要是沿用半导体离子注入机所产生的氮离子束来进行。这主要是因为氮等气体离子在适用于半导体离子注入的设备上容易获得比较高的离子束流。氮离子注入在金属、硬质合金、陶瓷和高分子聚合物等的表面改性的研究与应用中取得了引人注目的成功。因此这个阶段被称为氮离子注入阶段。
金属离子注入是新一代的材料表面处理高技术。它利用具有很高能量的某种金属元素的离子束打入固体材料所引起的一系列物理的与化学的变化,来改善固体材料的某些表面性能。研究结果表明,金属离子注入在非半导体材料离子注入表面改性研究与应用中效果更加显著,应用范围更加广泛,许多氮离子注入无法实现的,金属离子注入可以很好地实现。但是,基于半导体离子注入需要的传统离子注入机,要想获得比较强束流的金属离子束是比较困难的,进行非半导体材料离子注入表面改性所需的费用也是比较昂贵的。2100433B
半导体离子注入工艺 09电科 A柯鹏程 0915221019 离子注入法掺杂和扩散法掺杂对比来说,它的加工温度低、容易制作浅结、均匀的 大面积注入杂质、易于自动化等优点。当前,离子注入法已成为超大规模集成电路 制造中不可缺少的掺杂工艺。离子注入是一种将带点的且具有能量的粒子注入衬底 硅的过程。注入能量介于 1eV到 1MeV之间,注入深度平均可达 10nm~10um。相对 扩散工艺,粒子注入的主要好处在于能更准确地控制杂质参杂、可重复性和较低的 工艺温度。 1.离子注入原理 : 离子是原子或分子经过离子化后形成的,即等离子体,它带有一定量的电荷。可通 过电场对离子进行加速,利用磁场使其运动方向改变,这样就可以控制离子以一定 的能量进入 wafer 内部达到掺杂的目的。 离子注入到 wafer 中后,会与硅原子碰撞而损失能量, 能量耗尽离子就会停在 wafer 中某位置。离子通过与硅原子
采用俄歇电子能谱仪分析Ta离子注入铝青铜合金的Ta、Cu和Al元素分布,利用显微硬度仪测量注入Ta离子铝青铜的显微硬度,用摩擦磨损试验机分析QAl9-4铝青铜的摩擦系数和磨损质量损失。结果表明:随Ta离子注入剂量的增加,铝青铜中的Ta原子浓度升高,离子注入深度超过100 nm,显微硬度显著增高,在距合金表面约60 nm深处硬度达到最大值;铝青铜的摩擦系数显著降低,单位时间内磨损质量损失显著减小,因此明显提高了铝青铜的耐磨性能。
离子注入首先是作为一种半导体材料的掺杂技术发展起来的,它所取得的成功是其优越性的最好例证。低温掺杂、精确的剂量控制、掩蔽容易、均匀性好这些优点,使得经离子注入掺杂所制成的几十种半导体器件和集成电路具有速度快、功耗低、稳定性好、成品率高等特点。对于大规模、超大规模集成电路来说,离子注入更是一种理想的掺杂工艺。如前所述,离子注入层是极薄的,同时,离子束的直进性保证注入的离子几乎是垂直地向内掺杂,横向扩散极其微小,这样就有可能使电路的线条更加纤细,线条间距进一步缩短,从而大大提高集成度。此外,离子注入技术的高精度和高均匀性,可以大幅度提高集成电路的成品率。随着工艺上和理论上的日益完善,离子注入已经成为半导体器件和集成电路生产的关键工艺之一。在制造半导体器件和集成电路的生产线上,已经广泛地配备了离子注入机。
70年代以后,离子注入在金属表面改性方面的应用迅速发展。在耐磨性的研究方面已取得显著成绩,并得到初步的应用,在耐腐蚀性(包括高温氧化和水腐蚀)的研究方面也已取得重要的进展。
注入金属表面的掺杂原子本身和在注入过程中产生的点阵缺陷,都对位错的运动起“钉扎”作用,从而使金属表面得到强化,提高了表面硬度。其次,适当选择掺杂元素,可以使注入层本身起着一种固体润滑剂的作用,使摩擦系数显著降低。例如用锡离子注入En352轴承钢,可以使摩擦系数减小一半。尤其重要的是,尽管注入层极薄,但是有效的耐磨损深度却要比注入层深度大一个数量级以上。实验结果业已证明,掺杂原子在磨损过程中不断向基体内部推移,相当于注入层逐步内移,因此可以相当持久地保持注入层的耐磨性。
离子注入后形成的表面合金,其耐腐蚀性相当于相应合金的性能,更重要的是,离子注入还可以获得特殊的耐蚀性非晶态或亚稳态表面合金,而且离子注入和离子束分析技术相结合,作为一种重要的研究手段,有助于表面合金化及其机制的研究。
离子注入作为金属材料改性的技术,还有一个重要的优点,即注入杂质的深度分布接近于高斯分布,注入层和基体之间没有明显的界限,结合是极其紧密的。又因为注入层极薄,可以使被处理的样品或工件的基体的物理化学性能保持不变,外形尺寸不发生宏观的变化,适宜于作为一种最后的表面处理工艺。
离子注入由于化学上纯净、工艺上精确可控,因此作为一种独特的研究手段,还被广泛应用于改变光学材料的折射率、提高超导材料的临界温度,表面催化、改变磁性材料的磁化强度和提高磁泡的运动速度和模拟中子辐照损伤等等领域。2100433B
离子注入机是集成电路制造前工序中的关键设备,离子注入是对半导体表面附近区域进行掺杂的技术,其目的是改变半导体的载流子浓度和导电类型。离子注入与常规热掺杂工艺相比可对注入剂量、注入角度、注入深度、横向扩散等方面进行精确的控制,克服了常规工艺的限制,提高了电路的集成度、开启速度、成品率和寿命,降低了成本和功耗。离子注入机广泛用于掺杂工艺,可以满足浅结、低温和精确控制等要求,已成为集成电路制造工艺中必不可少的关键装备。
离子注入机由离子源、质量分析器、加速器、四级透镜、扫描系统和靶室组成,可以根据实际需要省去次要部位。离子源是离子注入机的主要部位,作用是把需要注入的元素气态粒子电离成离子,决定要注入离子的种类和束流强度。离子源直流放电或高频放电产生的电子作为轰击粒子,当外来电子的能量高于原子的电离电位时,通过碰撞使元素发生电离。碰撞后除了原始电子外,还出现正电子和二次电子。正离子进入质量分析器选出需要的离子,再经过加速器获得较高能量,由四级透镜聚焦后进入靶室,进行离子注入。