离子泵是膜运输蛋白之一。也看作一类特殊的载体蛋白,能驱使特定的离子逆电化学梯度穿过质膜,同时消耗ATP形成的能源,属于主动运输。离子泵本质是受外能驱动的可逆性ATP酶。外能可以是电化学梯度能、光能等。被活化的离子泵水解ATP,与水解产物磷酸根结合后自身发生变构,从而将离子由低浓度转运到高浓度处,这样ATP的化学能转变成离子的电化学梯度能。目前已知的离子泵有多种,每种离子泵只转运专一的离子。细胞内离子泵主要有钠钾泵、钙泵和质子泵。
离子泵蛋白 - 离子泵(ion pump)假说
离子泵假说是解释质膜上主动运输机制的例子之一.它认为,某些离子的运输之所以能逆浓度梯度的方向进行,是由于依靠了镶嵌在质膜脂质双分子层上的一种内在蛋白的分子构象变化来实现的.即可看作一类特殊的载体蛋白,能驱使特定的离子逆电化学梯度穿过质膜的过程,同时消耗ATP形成的能源,属于主动运输.
Na-K泵 存在于动、植物细胞质膜上,它有大小两个亚基,大亚基催化ATP水解,小亚基是一个糖蛋白。大亚基以亲Na 态结合Na 后,触发水解ATP。每水解一个ATP释放的能量输送3个Na 到胞外,同时摄取2个K 入胞,造成跨膜梯度和电位差,这对神经冲动传导尤其重要,Na -K 泵造成的膜电位差约占整个神经膜电压的80%。若将纯化的Na -K 泵装配在红细胞膜囊泡(血影)上,人为地增大膜两边的Na 、K 梯度到一定程度,当梯度所持有的能量大于ATP水解的化学能时,Na 、K 会反向顺浓差流过Na -K 泵,同时合成ATP。这种可逆现象是离子泵的普遍性质。
Ca2 泵 分布在动、植物细胞质膜、线粒体内膜、内质网样囊膜(SER-likeorganelle)、动物肌肉细胞肌质网膜上,是由1000个氨基酸的多肽链形成的跨膜蛋白,它是Ca2 激活的ATP酶,每水解一个ATP转运两个Ca2 到细胞外,形成钙离子梯度。通常细胞质游离Ca2 浓度很低,约10-7~10-8摩尔/升,细胞间液Ca2 浓度较高,约5×10-3摩尔/升。胞外的Ca2 即使很少量涌入胞内都会引起胞质游离Ca2 浓度显著变化,导致一系列生理反应。钙流能迅速地将细胞外信号传入细胞内,因此Ca2 是一种十分重要的信号物质。线粒体内腔、肌质网、内质网样囊腔中含高浓度的Ca2 ,浓度大于10-5摩尔/升,名为“钙库”。在一定的信号作用下Ca2 从钙库释放到细胞质,调节细胞运动、肌肉收缩、生长、分化等诸多生理功能。
质子泵即H 泵包括H -ATP泵和H 焦磷酸泵。
1、H -ATP泵
在植物细胞原生质膜和液泡膜上都存在着由ATP酶驱动的H 泵,它们的主要功能是调节原生质体的pH从而驱动对阴阳离子的吸收。由线粒体生成的ATP供质膜质子泵需要,ATP释放的能量建立跨膜的质子梯度和电位差,质子梯度活化离子通道或反向运输器或同向运输器,调节离子或不带电溶质的进出。液泡膜上的质子泵将H 泵入液泡,质外体、胞质溶胶和液泡的pH就有差异,分别是5.5、7.3~7.6、4.5~5.9。
2、H -焦磷酸泵
H -焦磷酸泵是位于液泡膜上的H 泵,它利用焦磷酸(PPi)中的自由能量(而不是利用ATP),主动把H 泵入液泡内,造成膜内外电化学势梯度,从而导致养分的主动跨膜运输。
如图所示,在每个阳极筒内发生的物理过程,可分解成六个步骤展开说明。
1)图中A表示在低压下,当阴极和阳极间加上高压时,引起场致发射。
2)图中B表示在电、磁场作用下电子作螺旋运动。
3)图中C表示电子与气体分子碰撞产生正离子和二次电子,引起雪崩效应。
4)图中D表示正离子轰击钛阴极,溅散出钛原子落在阳极筒上,形成新鲜钛膜,也有的落在阴板外围区(β区)。
5)图中E表示活性气体与新鲜钛膜反应形成化合物,化学吸附在阳极筒内壁。隋性气体被电离,离子在电场作用下轰击阴极过程中被排出。其排除方式为:(1)离子直接打入阴极表面内或β区(如图中a);斜射的离子切入阴极表面,离子和钛一起被掀掉,埋葬在β区(图中b);(2)离子没打入阴极内,从阴极得一电子恢复为中性原子或分子,反射到阳极内表面被埋掉(图中c),这叫“荷能中性粒子反射”。
6)图中F表示对于氢,由于其质量小,氢离子轰击钛板的溅射产额甚低,氢离子 H2 或 H 打到钛板上与电子复合变成H原子,然后扩散入钛的晶格内,形成TIH固溶体而被排出。常温下这种固溶体中H2的浓度为0.05%,当温度高于250oC以上时,便又开始分解放出氢。钛大量吸氢后。由于放热反应钛板温度上升,达到250oC以后,除重新释放氢之外并导致钛板晶格膨胀造成龟裂。通常需加大钛板的散热能力来改善溅射离子泵对氢的排除能力。要提高对氢的抽速,需保持钛板表面清洁,选用晶格常数较大的β-Ti或钛合金作为阴极板,或引入与氢可比拟的氩含量。因氩的溅散产额高,可提高对氢的抽速。
据英国Nature(2015)doi:10.1038/nature15247报道,清华大学的肖百龙、高宁和杨茂君等人运用蛋白质工程、X射线晶体学、单粒子低温冷冻电子显微镜和活细胞免疫染色等项技术,以中等分辨水平解析了压力蛋白1离子通道的全分子结构。细胞离子通道在调节细胞质膜对无机离子的通透性和实现神经、肌肉、内分泌等功能方面起着极重要的作用。对离子通道的研究始于1950年代,此后确认了由膜电位变化控制启闭的电压依赖性离子通道及由细胞外特定分子与细胞膜上受体分子结合控制启闭的配体门控离子通道。从1980年代起,
第 1 页 共 1 页 耐腐蚀离心泵的定义 FB不锈钢化工泵具有性能可靠、密封性好 ,造型美观 ,使用检修方便 等好处。 FB耐腐蚀离心泵主要用途:此泵广泛应用于化工、石油、冶金、轻 工、合成纤维、环保、食物、医药等行业。为进步产品质量、 减少跑、 冒、滴、漏 ,防止污染 ,有着很大的作用。此泵与输送介质接触的过流 部份零件 ,均采用 1Cr18Ni9Ti 材料制造。 第 2 页 共 2 页 AFB不锈钢耐腐蚀离心泵是在 F型耐腐蚀泵的基础上改进设计的 ,均 采用新型的付叶轮动力轴封密封装置 ,属单级单吸悬臂式耐腐蚀离心 泵。可用于输送不含固体颗粒 ,有侵蚀性液体 ,被输送介质温度为 -30℃~130℃ ,泵入口压力不大于 2kg/cm2。 FB 耐腐蚀泵常用于不含 有固体颗粒介质 ,介质温度为 -10℃~110℃ ,入口压力不大于 2kg/cm2。 一、耐腐蚀离心泵型号意义 100AFB
消气离子泵 |
是膜运输蛋白之一。也看作一类特殊的载体蛋白,能驱使特定的离子逆电化学梯度穿过质膜,同时消耗ATP形成的能源,属于主动运输。离子泵本质是受外能驱动的可逆性ATP酶。外能可以是电化学梯度能、光能等。被活化的离子泵水解ATP,与水解产物磷酸根结合后自身发生变构,从而将离子由低浓度转运到高浓度处,这样ATP的化学能转变成离子的电化学梯度能。目前已知的离子泵有多种,每种离子泵只转运专一的离子。细胞内离子泵主要有钠钾泵、钙泵和质子泵。 2100433B
溅射离子泵(SIP)具有工作范围宽、极限压强低、易于控制、无油、噪声低等优点,已经成为一种广泛应用的清洁超高真空获得设备。由于使用条件限制,有些真空器件仅靠溅射离子泵作为抽气设备难以达到要求,作者研制了一种微型复合溅射离子泵。复合溅射离子泵的概念早在1959年就有过报道。但最初的复合泵结构是在溅射离子泵的基础上加入了金属钛的热蒸发。随着非蒸散型吸气剂(NEG)的出现和发展,一些SIP生产厂家出现了将NEG组件添加到溅射离子泵体内构成的复合溅射离子泵产品,多为大抽速的溅射离子泵改装而成。
微型溅射离子泵通常应用在小型密闭真空器件中,器件内部一直处于真空状态,加入吸气剂构成的复合泵可以在不给系统带来负面影响的情况下提高微型溅射离子泵的抽气性能。由于非蒸散型吸气剂在暴露大气后需要重新激活才能使用,其性能随暴露大气次数增多急剧下降,所以对于那些可能经常暴露大气的系统不宜使用加入NEG的复合溅射离子泵。
泵体材料的选择:微型溅射离子泵结构紧凑、体积小,一般只采用单个阳极筒或几个阳极筒并列的结构。由于微型泵的抽速相对比较小,泵体材料自身的出气将影响泵的抽速和极限压强的大小。泵体材料除了满足一般超高真空应用要求以外,还有硬度高、强度大、无磁等要求。应用最多的泵壳材料是304L不锈钢。304L不锈钢出气速率很小,经过去脂烧氢烘烤等各种真空预处理后的出气速率只有6.7×10-10 Pa·L/s·cm2。但由于阴极钛板不能直接焊接到不锈钢上,采用不锈钢作为泵壳材料需要在不锈钢表面镀镍。镍膜磁导率大,镀镍后会较明显地影响阳极筒内的磁场分布。对某磁钢结构,如果在泵壳侧壁上镀一层30μm厚的镍膜,所得磁场的中心磁场强度下降超过2×10-2T。而无磁蒙奈尔则可以直接和钛板焊在一起,不需要镀镍。基于以上考虑,可选择真空熔炼的无磁蒙奈尔作为微型溅射离子泵的泵壳材料。真空熔炼的无磁蒙奈尔出气速率和不锈钢相当,甚至优于不锈钢。缺点是无磁蒙奈尔的价格相对不锈钢来说要高很多。
1、NEG的固定及激活方式
对于大型复合溅射离子泵可直接在泵腔内固定大吸气量的吸气剂组件,以大幅度提高复合泵的抽速。微型溅射离子泵内部空间非常狭小,泵内可以利用的空间只有阳极筒和泵壳之间的缝隙。采用SAES公司生产的ST系列的吸气剂颗粒,将其固定在阳极筒侧壁上。这种固定方式不影响阳极筒和泵壳之间的绝缘。
文献中在溅射离子泵连接管上再开一个法兰孔引出电极,通电给吸气剂组件进行激活。而本文所述微型溅射离子泵上再引出电极引线将增大泵的体积,是不现实的。只能通过直接加热的方式来激活吸气剂。由于永磁体在高温下会发生不可逆退磁,所以烘烤泵壳时应将磁钢卸下。商用的大型溅射离子泵磁钢笨重且磁能很大,拆装既不安全也很不方便。本文所研制的微型泵的磁钢和泵体相互独立,拆装简单,这给吸气剂直接烘烤激活带来了方便。
2、ST172性能测试
SAES公司推荐的ST172的激活条件是400℃ ,30min激活,实验中依次进行了200、250、300和350℃30min的激活。从实验结果可以看出,200℃激活时吸气剂已有明显的吸气性能,而且性能随着激活温度的升高不断升高。在350 ℃激活时其性能比200 ℃、250℃、300℃要好很多,接近SAES公司推荐的激活条件达到的性能。在实际应用中,可以选择350℃或稍低的温度,长时间烘烤泵体以达到较好的激活效果。微型复合溅射离子泵主要应用于密闭的小型真空器件中,它可以在不启动微型溅射离子泵的情况下长期维持真空器件内部的真空度,所以吸气剂不仅要有一定的抽速,还需要有足够大的吸气量以吸附器件在长时间存放时所释放的气体。
3、吸气剂掉粉问题的处理
非蒸散型吸气剂一般是通过金属合金球磨制粉后压制烧结而成的,所以在使用过程中吸气剂可能出现掉粉情况。微型溅射离子泵内部空间狭小,吸气剂散落颗粒可能会导致导管堵塞或绝缘性能下降,从而影响器件的正常工作。为减小吸气剂掉粉可能带来的影响,除从吸气剂配方和制造工艺上进行改进外,可利用高目数的不锈钢网筛将吸气剂包住,再焊接到阳极筒外侧,这样就可以保证不掉粉或者所掉颗粒极小,不影响器件正常工作。
研制的新型微型复合溅射离子泵,综合了溅射离子泵和非蒸散型吸气剂的各自优点,具有体积小、结构紧凑、漏磁少等特点。
消气离子泵是静电消气,是离子泵的一种。假说是解释质膜上主动运输机制的例子之一。它认为,某些离子的运输之所以能逆浓度梯度的方向进行,是由于依靠了镶嵌在质膜脂质双分子层上的一种内在蛋白的分子构象变化来实现的.即可看作一类特殊的载体蛋白,能驱使特定的离子逆电化学梯度穿过质膜的过程,同时消耗ATP形成的能源,属于主动运输。
目录·介绍·相关词条·相关链接·介绍·相关词条·相关链接