钢轨的类型是以每米长的钢轨质量千克数表示的。我国铁路上使用的钢轨有75kg/m、60kg/m、50kg/m,43kg/m和38kg/m等几种。钢轨的断面形状采用具有最佳抗弯性能的工字形断面,有轨头、轨腰以及轨底三部分组成。为使钢轨更好地承受来自各方面的力,保证必要强度条件,钢轨应有足够的高度,其头部和底部应有足够的面积和高度、腰部和底部不宜太薄。以上各种类型钢轨中,38kg/m钢轨现已停止生产,60kg/m、50kg/m钢轨在主要干线上铺设,站线及专用线一般铺设43kg/m钢轨。对于重载铁路和特别繁忙区段铁路,则铺设75kg/m钢轨。此外,为了适应道岔、特大桥和无缝线路等结构的需要,我国铁路还采用了特种断面(与中轴线不对称工字型)钢轨。现采用较多的为矮特种断面钢轨,简称AT轨。
锰具有脱氧、脱硫及调节作用(如阻止钢的粒缘碳化物的形成),还能增加钢材的强度、韧性、可淬性,在钢铁以及不锈钢制造过程中的应用非常广泛,此类用量占到了锰需求的85%一90%。
钢轨伤损是铁路轨道交通中较为严重的问题,直接影响了列车运行的安全与平稳,与运输成本、钢轨材料的选定以及相关的设计制造有着密切的关系。钢轨需要支持并且引导机车按照规定的方向来行驶。然而在长期的使用过程中,钢轨会出现损伤,例如常见的折断、裂纹以及其他影响性能的各种情况。只有明确钢轨伤损及其成因,才能更好地提高钢轨探伤的工作质量。
钢轨核伤
主要是因为钢轨在冶炼或者是轧制的过程中,所使用的材质比较差,或者是在使用过程中存在着缺陷,使得机车在反复荷载的作用下,应力得以集中,疲劳源不断增加并且扩展。钢轨核伤主要发生在钢轨的头部位置内侧,并且伴随核伤的直径加大,钢轨所承载的能力便会随之降低。因此在高速重复载荷的作用下,钢轨极其容易发生折断。
钢轨接头损伤
这是线路当中最为薄弱的一个环节,机车车辆车轮不断作用于钢轨的接头上,使得承受最大的惯性力要比其他部位增加55%左右。因此在平常的钢轨探伤过程中,经常会发生螺孔裂纹或者是马鞍形磨耗等。
钢轨纵向与垂直水平裂纹
钢轨纵向与垂直水平的裂纹主要是因为钢轨制造工艺较差,没有重视钢锭中存在的严重偏析、缩孔、夹杂等问题。使得钢锭在轧制成为钢轨之后,那些缺陷就会成片状地残留在钢轨头部、钢轨轨腰部位还有钢轨轨底部位,相反地与钢轨纵向平行,呈现水平或者是垂直的状态。
钢轨轨底裂纹
从钢轨腰垂直纵向裂纹向下发展,便成为了钢轨轨底裂纹。钢轨轨底锈坑或者是划痕便会形成钢轨轨底横向裂纹。另外在制造钢轨的过程中,钢轨轨底有轧制、与垫板轨枕间不密贴等缺陷,使得钢轨底部受到极大的应力,从而导致钢轨轨底横向裂纹或者破裂。
工作原理:1)电晕电极(电压约数十千伏的直流高压电源)的尖端通过电晕放电所产生的正电荷喷射到移动着的绝缘皮带上,通过皮带向上传送。2)一部分正电荷经集电极和电阻进入球形高压电极;另一部分则到对地绝缘而...
起电机,又名感应起电机,旋由两块圆形有机玻璃叠在一起组成,中有空隙,每块向外的表面上都贴有铝片,铝片以圆心为中心对称分布。
如图1所示,感应起电机旋由两块圆形有机玻璃叠在一起组成,中有空隙,每块向外的表面上都贴有铝片,铝片以圆心为中心对称分布。由于两盘分别与两个受动轮固定,并依靠皮带与驱动轮相连,两根皮带相互交叉,使转动驱...
超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
磁粉探伤利用了钢铁制品表面和近表面缺陷(如裂纹,夹渣,发纹等)磁导率和钢铁磁导率的差异,磁化后这些材料不连续处的磁场将发生畸变,形成部分磁通泄漏处工件表面产生了漏磁场,从而吸引磁粉形成缺陷处的磁粉堆积——磁痕,在适当的光照条件下,显现出缺陷位置和形状,对这些磁粉的堆积加以观察和解释,就实现了磁粉探伤。
涡流探伤是以交流电磁线圈在金属构件表面感应产生涡流的无损探伤技术。涡流磁场方向与外加电流的磁化方向相反,因此将抵消一部分外加电流,从而使线圈的阻抗、通过电流的大小相位均发生变化。管的直径、厚度、电导率和磁导 率的变化以及有缺陷存在时,均会影响线圈的阻抗。若保持其他因素不变,仅将缺陷引起阻抗的信号取出,经仪器放大并予检测,就能达到探伤目的。
(1)钢轨在使用一段时间后采用打磨方法将钢轨踏面形状打磨成更接近钢轨原有的型(状)线,这样可将轮轨接触点转移到钢轨的踏面中央部位,减小接触应力,控制接触疲劳裂纹的形成和扩展。改变轮轨接触的位置和形态,也可以将火车的车轮打磨成磨耗形踏面来改变轮轨接触的位置和形态。采用磨耗形车轮后将原来的锥形接触变成圆弧接触,减小了横向压力同时也降低了轮轨接触应力磨耗形踏面由于与钢轨面的接触是圆弧接触,因而它的接触应力较锥形踏面降低了70%,防止了钢轨头部疲劳裂纹的形成和扩展。
(2)通过改善线路条件(如线路参数的设置可根据线路的实际情况改变原线路下股轨底坡的设计,将原1/40改为1/20可以降低上股的横向压力,即减轻了轮轨接触间的接触应力;提高道床的平顺度,加强道渣的清理等措施完善线路的维修与养护,维修与养护的好坏直接关系到轮轨接触应力的大小,即直接影响钢轨产生接触疲劳损伤的时间),也可以达到改变轮轨接触形态,改善和降低轮轨接触应力和横向压力,从而达到减少和消除接触疲劳伤损的目的。
(3)在线路上可选用耐磨性一般的U71Mn钢轨即可。
静 电 起 电 机 目的: 自制一只如图 l 所示的起电机,进行静电实验。 材料: 280×160×15(毫米 )3木板一块, 245×45× 15(毫米 )3木板两块, 40×20× 15(毫米 ) 3小木块四 块,160×15× 12(毫米 )3有机玻璃一根,旧虫胶制中间无纸隔层的唱片两张(用有机玻璃薄片更好) , 850×52(毫米 )2铝箔一张,直径 3 毫米、长 1100毫米的铜丝一根,直径 80 毫米、厚 15 毫米的木圆 盘两只,直径 30 毫米、厚 30毫米的木圆盘两只,直径 20 毫米、厚 10毫米的圆轮两只,长 110 毫 米的铁钉一只,长 205毫米的粗铁丝一根,直径 10毫米的铜球(可用废钢珠代替)两只,大的硬质 试管(附软木塞)一只,直径 50毫米、厚 3 毫米的玻璃圆板一块, 50× 110(毫米 )2的铁片一张,长 1100 毫米的粗带子一根,细铜丝适量,快
分析了轻质燃料油中油液-固体间、油液-油气间和油气的静电起电机理;简要概括了通过控制流速、加油方式、控制杂质、防止作业起电和添加抗静电剂等防治静电起电的防范措施。
它不仅可以作为起电装置,还可以演示火花放电现象,效果非常好.但是在维氏起电机的使用过程中,必须顺时针摇动手柄,学生在实验过程中,也常常因为逆时针摇动手柄而不能成功地使起电机起电,特别是一些习惯用左手的人,在操作起电机时会感觉有些别扭.
维氏起电机作用
感应起电机是一种能连续取得并可积累较多正、负电荷的实验装置。莱顿瓶是个电容,用来储电。感应起电机在左右各有一莱顿瓶,两莱顿瓶集聚不同种电荷,作为电源的正负极。
当顺时针摇动转轮上的摇柄时,由于在静电序列中铝排在铜之前,所以在圆盘转动时铝片与电刷上的铜丝摩擦而带上正电荷,铜丝带负电荷。如图:假设刚摩擦时金属铝片S1带电量为Q1,与其在同一直径上的铝片S2带电量为Q2,Q1与Q2有大小之分。图37-2所示。
当圆盘转过90°时,S1与反面电刷Bˊ相对,此时S2ˊ、S1ˊ分别与S1、S2相对。假设Q1>Q2,由于S1ˊ与S2ˊ之间有电刷连接,会引起自由电子移动,使得S1ˊ带正电荷,S2ˊ带负电荷,图37-2(b)。
当圆盘再转过45°时,S1、S2分别顺时针转至与电极相接的悬空电刷E2、E1处,并在该处放电使E1、E2带正电荷,这些正电荷又被积聚在莱顿瓶C1、C2中,图37-2(c)。
当圆盘再转过45°即S1转到与正面电刷B相对应时, S1与S1ˊ相对,S2与S2ˊ相对,刚经过放电的S1与S2恰好不再带有电荷。S2ˊ带负电使得S2感应带正电,又由于与金属刷上铜丝摩擦也使它带正电,在二者共同作用下S2带上了正电荷;对于S1来说,S1ˊ上的正电荷使其感应带负电荷,由于金属刷的连接作用,S2所带的正电荷会导致电子移动(如图37-3)使S1带负电,这样,虽然有摩擦产生的正电荷也会被以上两种作用所产生的负电荷抵消,因此S1还是带负电荷,图37-2(d)。
圆盘再转过45°时,S1ˊ与S2ˊ恰好分别转到悬空电刷E2ˊ与E1ˊ处。带正电的S1ˊ在E2ˊ处放电后不再带电,E2ˊ上的负电荷被中和使E2ˊ带正电,这些正电荷被莱顿瓶C2积聚到放电叉T2的放电小球上;带负电的S2ˊ在E1ˊ处放电后也不再带电,且E1ˊ上的正电荷被中和使E1ˊ带负电,这些负电荷被莱顿瓶C1积聚到放电叉T1的放电小球上,图37-2(e)。
如果圆盘又转过45°,S1又与S2ˊ相遇,S2与S1ˊ相遇,且此时S1﹑S2与反面电刷Bˊ相对,S1ˊ﹑S2ˊ分别在E2、E1处放电后不再带电。此时的电荷变化与过程(d)相似, 因此与S1相对的S2ˊ带正电荷, 与S2相对的S1ˊ带负电荷,图37-2(f)。
当圆盘再转过45°,此时S1﹑S2恰好分别转到悬空电刷E1﹑E2处。S1在E1处放电使得负电荷被积聚到放电叉T1的放电小球上,S2在E2处放电使得正电荷被积聚到放电叉T2的放电小球上,图37-2(g)。之后转动摇柄,电荷的变化情况将重复过程(c)~(g),由于两盘的逆向旋转,转至与电极相接的悬空电刷E2、E2ˊ处的金属片将全部带正电,转至与电极相接的悬空电刷E1、E1ˊ处的金属片将全部带负电。莱顿瓶C2感应到放电小球T2上的正电荷会越来越多,而被莱顿瓶C1感应到放电小球T1上的负电荷也会越来越多,当小球聚集一定电荷时,就会产生放电现象。在莱顿瓶盖内放电叉与悬空电刷之间的空气也会被电离,使放电叉与悬空电刷在短时间内相当于一个导体,将事先聚集在莱顿瓶中的电荷大部分中和之后,再一次重复上述过程。
但是,起电机并不是从一开始就可以放电的,因为空气被击穿需要一定的电压,这就需要积聚一定的电荷,而放电叉T1、T2上电荷的积累需要一定时间,所以当起电机长时间不用后要摇动摇柄一定时间后T1、T2间的电压才能达到空气的击穿电压而产生放电现象。
那么,反向转动摇杆时是否也会达到相同的效果呢?回答是否定的,因为反转时虽然起电机原理和正转一样,但由于正反两面的铝片在摩擦起电后都没有再经过另一侧电刷,而是直接在悬空电刷处放电,使两个莱顿瓶带有同种电荷,因此不会放电。
劲瀑3.0技术,循环喷淋,洁净,节约能源,晶钻内桶,防止磨损,提高洗净率,洗涤剂余量报警。