常用的TN-S系统(也就是原来的三相五线)是把工作零线N 和地线PE严格分开的供电系统,用户侧零线在一般情况下是不允许再次短接的。而送电路由的远近决定了零线的长短,在零线截面积不变的情况下,零线的长短也就决定了零线电阻值的大小。零线上有电阻,一旦零线上有电流通过,则零地电压就产生了。
从上图可以看出零地电压与一般意义上的电压并无不同,为什么人们对零地电压这么重视呢?这需要从零地电压的起源说起。最经典的说法是某计算机厂商在机器开机前必须测量零地电压,如果零地电压大于1v,则厂商不开机,什么时候将零地电压降到符合要求时才开机。 至此在许多场所开始对零地电压提出要求,通常都是小于1v,随后的场地国家标准也将其纳入其中。但随着设备越来越多,越来越复杂,人们发现将零地电压控制在1v内越来越难。
2008年颁布的《电子信息系统机房设计规范》GB50174-2008在统计的结果上将零地电压限制在2v以内。那么零地电压为什么要限制?这需要从零地电压升高的原因说起。在现在机房环境中导致零地电压偏高的原因主要有:
①接地不符合要求;
②三相电源负载不平衡;
③高频谐波;
④其它原因(线缆太细、距离太远等);
如果零地电压高是因为接地不符合要求引起的,零地电压的升高只是接地不可靠的一种表象,所以对设备是有害的,我们必须把接地做的可靠。某计算机厂商在设备开机前测量零地电压来检验接地是否可靠就是一个例子。
其它原因尤其是三相电源负载不平衡和高频谐波干扰在现在的机房中是经常发生的,也是导致零地电压随负载增加而增高的原因。在正常情况下,这些原因引起的零地电压增高是无害的。需要把零地电压控制在多大范围内应该由设备厂商提出,无要求的就按国家标准进行控制。
欧洲是无需控制零地电压的,国内要求放松零地电压控制的呼声也逐渐增高,在新修编的国家标准GB50174征求意见稿中,已经不对零地电压提出要求了。
本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。
零地电压就是零线n上的电压,也可以说是零线n和地线pe的电势差,因为在正常情况下地线是电压为零,所以零地电压就是零线上的电压也即下图所示的Upen。Upen=In*Rn,In是流经零线的电流,Rn是零线的电阻值。
常用的TN-S系统(也就是原来的三相五线)是把工作零线N 和地线PE严格分开的供电系统,用户侧零线在一般情况下是不允许再次短接的。而送电路由的远近决定了零线的长短,在零线截面积不变的情况下,零线的长短也就决定了零线电阻值的大小。零线上有电阻,一旦零线上有电流通过,则零地电压就产生了。
从上图可以看出零地电压与一般意义上的电压并无不同,为什么人们对零地电压这么重视呢?这需要从零地电压的起源说起。最经典的说法是某计算机厂商在机器开机前必须测量零地电压,如果零地电压大于1v,则厂商不开机,什么时候将零地电压降到符合要求时才开机。 至此在许多场所开始对零地电压提出要求,通常都是小于1v,随后的场地国家标准也将其纳入其中。但随着设备越来越多,越来越复杂,人们发现将零地电压控制在1v内越来越难。
2008年颁布的《电子信息系统机房设计规范》GB50174-2008在统计的结果上将零地电压限制在2v以内。那么零地电压为什么要限制?这需要从零地电压升高的原因说起。在现在机房环境中导致零地电压偏高的原因主要有:
①接地不符合要求;
②三相电源负载不平衡;
③高频谐波;
④其它原因(线缆太细、距离太远等);
如果零地电压高是因为接地不符合要求引起的,零地电压的升高只是接地不可靠的一种表象,所以对设备是有害的,我们必须把接地做的可靠。某计算机厂商在设备开机前测量零地电压来检验接地是否可靠就是一个例子。
其它原因尤其是三相电源负载不平衡和高频谐波干扰在现在的机房中是经常发生的,也是导致零地电压随负载增加而增高的原因。在正常情况下,这些原因引起的零地电压增高是无害的。需要把零地电压控制在多大范围内应该由设备厂商提出,无要求的就按国家标准进行控制。
欧洲是无需控制零地电压的,国内要求放松零地电压控制的呼声也逐渐增高,在新修编的国家标准GB50174征求意见稿中,已经不对零地电压提出要求了。
对地电压是线电压。三相电路中A、B、C三相引出线相互之间的电压,又称相间电压。不论星形接线还是三角形接线,三个线电压分别是UAB、UBC和UCA,如图所示。相间电压是相电压。三相发电机星形接法中,三个...
【获得零序电压的方式】1、当中性点直接接地系统(又称大电流接地系统)中发生接地短路时,将出现很大的零序电压和零序电流。2、在中性点不直接接地系统(经高阻抗接地系统或经消弧线圈接地系统)中当发生单相接地...
当中性点直接接地系统(又称大接地电流系统)中发生接地短路时,将出现很大的零序电压和电流。还有在中性点不直接接地系统中当发生单相接地时,也会产生零序电压。 零序电源在故障点,故障点的零序电压最高,系统中...
科学地认识数据机房 UPS电源的“零地电压”问题 作者: | 出处: 维库开发网 | 2010-09-17 14:16:06 | 阅读 1618 次 科学地认识数据机房 UPS电源的“零地电压”问题 , 摘要 :本文通过分析数据机房电源零地电压的形成机理, 论述了零地电压产生的不可避免性和对 IT 负载可能的影 摘要 :本文通过分析数据机房电源零地电压的形成机理,论述了零地电压产生的不可避免性 和对 IT 负载可能的影响, 建议数据机房用户应该正确地看待零地电压问题, 走出零地电压 的技术误区,避免不必要的资源浪费。 一、 引言 长期以来, 在国内机房数据中心电源的设计、 建设与应用过程中, “零地电压”被忽悠得神 乎其神, 甚至成为了机房供电电源品质的首要指标。 近年来这种趋势愈演愈烈, 令人难以置 信的是这一反科学的的“零地电压”居然被写进了某些国家级标准,如某 GB级的机房设计 规
介绍了用隔离变压器降低 UPS 零地电压的方法,解决了 UPS 上电开机前零地电压低,而开机后零地电压升高的现象.
零序电压保护指在大电流接地系统发生接地故障后,利用零序电压构成保护接地短路的继电保护装置。正常情况下,UA UB UC的向量和为0,当系统发生单相接地后,UA UB UC的向量和不再为0,这个不为0的值变是零序电压,通过检测该电压能够反映系统是否发生单相接地故障,这就是零序过电压保护。
零序电源在故障点,故障点的零序电压最高,系统中距离故障点越远处的零序电压就越低,取决于测量点到大地间阻抗的大小。
正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点像力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了毛病(特别是单相接地时的零序分量)。
零序电压是三相线路中一相或者两相接地产生的,大小取决于接地的程度,是金属接地,非金属接地,还是接地电阻了。
零序电流和零序电压配电所或变电站中的后台监控软件中一般被用做故障信号来处理,其在正常情况下值为零,如果出现故障,电脑会自动报警。
正序、负序、零序电压区别
正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了毛病(特别是单相接地时的零序分量)。2100433B