有色金属尾砂砷污染问题是我国生态文明建设亟待解决的重要问题。目前,含砷固体废弃物的固化方法主要有火法和湿法两类。这两类方法成本高、处理能力有限,不适用于治理数量巨大的有色金属尾砂。本项目结合当前矿业充填采矿技术的必然发展趋势,提出采用矿渣-钢渣-脱硫石膏全固废胶结剂对含砷有色金属尾砂进行胶结并回填井下采空区。前期探索研究发现该矿渣-钢渣-脱硫石膏胶结剂固砷能力为普通硅酸盐水泥的5-10倍。以此为基础,本项目拟开展矿渣-钢渣-脱硫石膏胶结剂固砷硬化体中砷的环境稳定性、矿渣-钢渣-脱硫石膏胶结剂固砷硬化体水化产物鉴别、矿渣-钢渣-脱硫石膏胶结剂水化固砷的过程研究等方面的研究,揭示该胶结剂的固砷机理,提出进一步提高其固化能力的调控技术。该项目的成功实施对解决含砷有色金属尾砂以及其他含砷危废的低成本地下安全处置、为预测充填体长期稳定性提供理论基础、推动充填采矿技术的发展等方面具有重要意义。 2100433B
有色金属尾矿砷污染问题是我国生态文明建设亟待解决的重要问题。目前,含砷固体废弃物的固化方法主要有火法和湿法两类,这两类方法成本高、处理能力有限,不适用于治理数量巨大的有色金属尾矿。本项目结合当前矿业充填采矿技术的必然发展趋势,提出采用矿渣-钢渣-脱硫石膏全固废胶结剂对含砷有色金属尾矿进行胶结并回填井下采空区。前期探索研究发现该矿渣-钢渣-脱硫石膏胶结剂的固砷能力为普通硅酸盐水泥的5-10倍。以此为基础,本项目拟开展矿渣-钢渣-脱硫石膏胶结剂固砷硬化体中砷的环境稳定性、矿渣-钢渣-脱硫石膏胶结剂固砷硬化体水化产物鉴别、矿渣-钢渣-脱硫石膏胶结剂水化固砷的过程研究等方面的研究,揭示该胶结剂的固砷机理。该项目的成功实施对解决含砷有色金属尾矿以及其他含砷危废的低成本地下安全处置、为预测充填体长期稳定性提供理论基础、推动充填采矿技术的发展等方面具有重要意义。
嘻嘻!后者是前者打碎了之后的样子吧!
应用在石膏抹灰,石膏地坪,石膏腻子,医学石膏,模具石膏,牙科石膏等.140-160元每吨
脱硫石膏主要是电厂烟气湿法脱硫的副产品。其成分与天然石膏基本相同,纯度和细度更高。 脱硫石膏利用的途径有很多,主要是经过煅烧可以制成半水或者无水石膏。这两种都是胶凝材料。 以煅烧出的石膏为原料可以...
本文通过加入生石灰、无机盐类激发剂JF等化学添加剂对氟石膏进行初步化学改性固氟脱酸,重点研究了矿渣掺量对氟石膏胶结材力学性能和耐水性的影响。结果表明:在氟石膏中添加少量的生石灰能有效地实现固氟脱酸;盐类激发剂JF能明显的缩短氟石膏胶结材的凝结时间,提高胶结材强度,但掺量超过一定值(0.4%)后,氟石膏胶结材水化速率减缓,强度随着激发剂掺量的增加而降低;矿渣在碱性条件下能充分地促进氟石膏水化,生成钙矾石晶体和C-S-H凝胶,提高氟石膏胶结材料的强度和软化系数。
通过采用SEM、XRD微观分析和宏观测定强度、耐水性的方法对磷石膏-矿渣-石灰-水泥胶结料体系的性能和凝结硬化机理进行了研究。研究结果表明,磷石膏粒径越小,配制的胶结料抗压强度越高,磷石膏经石灰预先中和处理后,可显著改善胶结料性能,尤其经中和+球磨后,效果更好。通过正交试验获得了胶结料优化配合比。90℃下蒸养7 h,28 d抗压强度高达42.3 MPa,耐水性良好。
北极星节能环保网讯:本文在分析钢渣的资源利用特性与地下水污染风险的基础上,模拟研究钢渣作为可渗透反应墙(PRB)介质对砷污染地下水的去除性能,分析初始砷浓度、原水流速等对除砷性能的影响,并对钢渣用作砷污染地下水原位修复的PRB材料的可行性进行探索。结果表明,钢渣的主要元素为Ca、Fe、、Si、Mg、Al,利用钢渣碱度高、机械强度大、成多孔结构,可作为良好的过滤性能和吸附材料;钢渣浸出液的pH、重金属与氟含量均低于我国危险废物浸出毒性鉴别标准,环境污染风险很小;在流量相同的情况下,钢渣PRB对砷的去除率在初始砷质量浓度达到最大,流量低时,初始砷含量浓度对去除效果影响不明显。
以平炉、转炉钢渣(简称钢渣)和粒化高炉矿渣为主要组分,加入适量硅酸盐水泥熟料、石膏(或其他外加剂),磨细制成的水硬性胶凝材料,称为钢渣矿渣水泥。
钢渣矿渣水泥的发展基于碱矿渣水泥与钢渣石膏水泥两个方面。碱矿渣水泥是前苏联的乌克兰基辅建筑工程学院于1957年提出的,它用碱金属化合物与矿渣相混合而成。这种方法是模仿天然沸石的形成过程,即类似于地球表层中矿物的形成,如沸石、云母、水合云母等。地球表层主要由基于钙—钠—钾—铝硅酸盐形成的岩石矿物组成,它们非常稳定,具有强抗腐能力。前苏联于1960年开始了碱矿渣水泥及其混凝土的中间试验,并在1964年开始工业化生产,1977~1979年间实现了碱矿渣水泥生产及性能检验的标准化。研究表明:可溶性的碱金属化合物(苛性钠、非硅酸盐、硅酸盐和铝酸盐)以及不含钙的铝硅酸盐系统(特定的矿渣和火山灰、烧岩石、烧粘土)和钙胶凝系统(石灰、硅酸盐和铝硅酸盐水泥,高炉矿渣及高钙火山灰、钢渣)都可以形成水泥胶凝体系,它在水里、自然条件及蒸养、蒸压下都可以凝结与硬化。这样就扩大了碱矿渣水泥的原料范围,粉煤灰、炉渣、磷渣、钢渣等许多工业废渣都可以加以利用,即凡天然或人工的铝硅酸盐原料,在强碱作用下能水解成稳定水化物的,原则上都可以作为碱激发的原料。当碱、矿渣两组份配合时称为碱矿渣水泥,当碱与更多的原料配合时则称为碱激发多组份水泥。而上述的胶凝系统中因为都含有碱金属组份,因而可以统称为碱胶凝材料。钢渣石膏水泥则最早出现在我国,这种20世纪60年代出现的两组份水泥虽然有一定机械强度,但水化速度慢,早期强度低,凝结时间长,且钢渣中的游离氧化钙易导致水泥的安定性不良。70年代初期,在上述水泥中加入了矿渣,解决了安定性问题,并提高了后期强度,但早期强度低、凝结缓慢的问题仍未解决。70年代后期,又在钢渣、矿渣、石膏体系中加入了少量硅酸盐水泥熟料,提高了水泥的早期强度,统筹了其凝结时间,使得该水泥有了较大的发展。从80年代后期,研究人员结合碱胶凝材料的理论,在石膏、熟料两种激发剂的基础上,又引入了碱金属化物,即用硫酸钙、氢氧化钙、氢氧化钠(钾)进行联合激发,取得了良好的结果,并降低了熟料用量。进入90年代,由于激发剂技术的发展,即使不用熟料,也能使钢渣矿渣水泥获得良好的性能,使这类水泥发展到了一个新阶段。也即碱胶凝材料的物理化学基础理论,赋予了钢渣矿渣水泥新的生命力。