以结晶粒子大小而言,一些细粒的岩石或隐晶质的岩石,其抗压强度往往要较粗粒为大。例如细粒的砂岩,其抗压强度便要较粗粒为大。以火成岩和变质岩而言,当中有些晶体彼此钩结得很牢固,其抗压强度自然要较一些钩结不良的为大。
p=P/A
式中 p为抗压强度,以每平方吋多少磅(psi)、每平方公分多少公斤为单位,P为压力,以磅、公斤为单位,A为剖面面积,以平方公分、平方吋为单位。
大致说来,火成岩、石英岩和特别坚硬的硅质砂岩,具有最大的抗压强度。例如一些未风化之玄武岩,其无侧束抗压强度可达到60,000psi。影响岩石抗压强度的因素很多,其最重要的有三种因素:组织、胶结物的性质、压力的方向等。
下面就以岩石为例,详细向大家解释下什么是抗压强度
岩石的抗压强度是指在无侧束状态下(Unconfined)所能承受的最大压力,通常以
每平方公分多少公斤,或每平方英寸多少磅。换言之,它指把岩石的加压至破裂所需要的应力。
岩石的最大抗压强度的量测,通常是在固定的实验室中进行,并利用功率为十至一百吨以上的特殊水压机来把测试样本压碎。为测试岩石的抗压强度,其样品需制成立方体或圆柱体的形状,同时其尺寸还得视岩石的不同而异。对高强度的岩石而言,立方体形状的样品尺寸为5㎝×5㎝×5㎝,中等强度的岩石其样品尺寸为7㎝×7㎝×7㎝,而松软的岩石其样品尺寸为10㎝×10㎝×10㎝。对于矿物成份不均匀的岩石,其立方体形状的样品尺寸,应较矿物成份均匀的岩石为大。
为了避免获得意外的结果,应该采取同一石料的若干样品分别在干燥或潮湿的状况下进行试验。不过这种测试未必能够得到正确的数据,因为即使同一种的岩石,其抗压强度也不一定完全相同,还要看压缩方向和样品的构造等关系而定。此种具有方向的性质,以页岩特别显著。
下面介绍来自中国仪器超市最简单的抗压强度试验,将样品压碎的力以P来表示。
样品的剖面面积为2吋×2吋即4平方吋,同时已知岩石的抗压强度为每平方吋一万磅(10,000psi),如此对样品施以10,000×4=40,000磅压力时,样品将会被破坏。
砂浆养护根据规范要求留置70.7*70.7*70.7的砂浆立方体,在标准养护条件下养护28天,所得的结果大于等于设计强度为合格。你7天抗压强度为9.3MPa,28天的抗压强度肯定超出设计强度。
如果试块是70.5*70.5*70.5mm尺寸的话,受力面积为5000mm^2,那么破坏荷载就是25kN★强度代表值:5MPa 那么,其抗压张度与受力面积是有关系的,所以不能笼统的回答吧??
你好,试样在拉伸过程中,在拉断时所承受的最大力(Fb),出以试样原横截面积(So)所得的应力(σ),称为抗拉强度(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算...
在沉积岩方面其抗压强度,大多决定于胶结物的性质,特别以砂岩、砾岩和角砾岩为然。例如,假如岩石中的胶结物是黏土,则砂岩的抗压强度一定很低;假如岩石中的胶结物是石英的话,则砂岩的抗压强度一定变成最强,这些石英所胶结的岩石又称为硅化(Silicified)。
岩石的抗压强度也决定于挤压应力作用的方向。以沉积岩而言,它们具有层面的,如果应力作用的方向和层面垂直,则岩石的抗压强度为最大。此外,某些岩石常常具有裂缝、矿脉或片理等类的构造,如果它们的方向和破裂面(Plane of Failure)的方向一致时,则对岩石的抗压强度自然影响很大。
岩石种类 抗压强度(Kg∕㎝2)
花岗岩(Granite) 1,000 ~ 2,500
正长岩(Syenite) 1,000 ~ 2,000
闪长岩(Diorite) 1,500 ~ 2,800
辉长岩(Gabbro) 1,000 ~ 2,800
辉绿岩(Diabase) 2,000 ~ 3,000
玄武岩(Basalt) 4,000
结晶质石灰岩(Crystalline Limestone) 1,000 ~ 2,000
石英砂岩(Quartzose Sandstone) 2,000
石英岩(Quartzite) 3,000
片麻岩(Gneiss) 1,000 ~ 2,0002100433B
回弹均 测区混凝土平均抗压强度换算值 f(Mpa)吴白明 平均碳化深度值 d平均(mm) 值 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 ≥6 20 10.3 10.1 ⋯ 21 11.4 11.2 10.8 10.5 10.0 22 12.5 12.2 11.9 11.5 11.0 10.6 10.2 ⋯ 23 13.7 13.4 13.0 12.6 12.1 11.6 11.2 10.8 10.5 10.1 24 14.9 14.6 14.2 13.7 13.1 12.7 12.2 11.8 11.5 11.0 10.7 10.4 10.1 25 16.2 15.9 15.4 14.9 14.3 13.8 13.3 12.8 12.5 12.0 11.7 11.3 10.9 26 17.5 17.2 16.6 16.1 15.4
1.5-2.5 Y=8*X-5 1.50 7.0 2.5-4.0 Y=10*X-10 1.51 7.1 4.0-5.0 Y=12*X-18 1.52 7.2 抗弯拉强度 1.5 5.0-5.5 Y=14*X-28 1.53 7.2 抗压强度 7 1.54 7.3 1.55 7.4 1.56 7.5 1.57 7.6 #N/A 1.58 7.6 1.59 7.7 1.60 7.8 44.0 1.61 7.9 42.7 1.62 8.0 42.1 1.63 8.0 40.9 1.64 8.1 1.65 8.2 1.66 8.3 1.67 8.4 1.68 8.4 1.69 8.5 1.70 8.6 1.71 8.7 1.72 8.8 1.73 8.8 1.74 8.9 1.75 9.0 1.76 9.1 1.77 9.2 1.78 9.2 1.79 9.3 1.80 9.4 1.81 9.5
抗压强度试验是在材料试验机上进行的。一般焦炭试样制成直径约15mm、长23mm的圆柱体,型焦则用整块作试样。每种焦炭需取20个以上的试样作试验。室温下焦炭抗压强度大约为12-30MPa,在1500℃高温下测量时,抗压强度值将增大20%左右 。
1. 纸箱是由各层面的纸张构成的,纸张的合理搭配是保证纸箱抗压强度的基本条件。
通过各层面纸张物理性能的测试,我们可以初步计算纸箱的抗压强度,然后通过计算出的抗压强度,对生产过程中的各个工序进行纸箱抗压强度的控制。
2.纸张的环压强度是保证纸箱抗压强度的关键,不过纸张其他的物理性能也不容忽视。
纸张特别是楞纸抗张强度不够时,纸箱在抗压测试中会出现力值与变形量一直平稳递加,最终值很高而有效力值很低,箱体测试后变形如手风琴状的情况。纸张的防水性能也很重要,特别是冷藏箱对纸张的防水性能要求更高,有时虽然纸箱的抗压强度很高,但由于纸张不防水,纸箱存放在冷库中就容易吸潮,造成塌库。
3.纸箱的生产工艺也会对抗压强度造成影响。
通过试验得出,在同样条件下,纸箱的横压线每加宽1mm,纸箱的抗压强度下降90N~130N,变形量增加约2mm。压线过宽,会造成纸箱在抗压测试时力值增加缓慢,有效力值小,最终变形量大。为保证抗压强度,我们应尽量改善生产工艺,降低各工序对纸箱抗压强度的影响。
4.根据纸箱箱型选择合适的楞型也很关键。
在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,容易忽视楞型对变形量的影响。楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长,有效力值与最终力值偏差过大。
5.水分对纸箱抗压强度的影响更不可忽视。
纸箱的生产环境、存放环境、使用环境、天气、气候等因素都会对纸箱的含水量造成影响,为保证纸箱抗压强度,应尽量避免外部环境对纸箱含水量的影响。2100433B
砼抗压强度是指在外力的作用下,单位面积上能够承受的压力,亦是指抵抗压力破坏的能力。抗压强度在建筑工程中一般分为立方体抗压强度和棱柱体(轴心)抗压强度。
所谓立方体抗压强度是按《砼结构工程施工质量验收规范》(GB50204--2002),制作的边长为150mm标准立方体试件,在温度为(20±2)℃,相对湿度为95%以上的潮湿环境或不流动Ca(OH)2饱合溶液中养护的条件下,经28d养护,采用标准试验方法测得的砼极限抗压的强度,用fcu表示。
所谓棱柱体(轴心)抗压强度是在钢筋砼结构计算中,根据结构实际情况,计算轴心受压构件时常以棱柱体抗压强度作为依据,因为它接近于砼构件的实际受力状态。棱柱体(轴心)抗压强度的标准试验方法,是制成150mm×150mm×300mm的标准试件,在标准养护的条件下,测得其抗压强度值,即为棱柱体(轴心)抗压强度,用f表示。
由于立方体试件受压时上下受到的摩擦力比棱柱体试件的要大,所以立方体强度要高于棱柱体抗压强度。经试验分析,棱柱体(轴心)抗压强度fa=0.76fcu(当fcu在10~55MPa之间时)。