空间连杆机构由若干刚性构件通过低副(转动副﹑移动副)联接﹐而各构件上各点的运动平面相互不平行的机构﹐又称空间低副机构
中文名称 | 空间连杆机构 | 外文名称 | spatial linkage |
---|---|---|---|
低 副 | 转动副、移动副 | 又 名 | 空间低副机构 |
应用领域 | 农业机械、轻工机械、纺织机械 | 组 成 | 单自由度空间闭链机构 |
空间连杆机构常指单自由度空间闭链机构,但是随着工业机器人和假肢技术的发展,多自由度空间开链机构也有不少用途。单自由度单环平面连杆机构只含4个转动副,而单自由度单环空间连杆机构所含转动副应为7个,此即空间七杆机构。空间连杆机构中采用多自由度的运动副如球面副或圆柱副时,所含构件数即可减少而形成简单稳定的空间四杆机构或三杆机构。为了表明空间连杆机构的组成类型,常用R、P、C、S、H分别表示转动副、移动副、圆柱副、球面副、螺旋副。一般空间连杆机构从与机架相连的运动副开始,依次用其中的一些符号来表示。常用空间四杆机构的组成类型有RSSR、RRSS、RSSP和RSCS机构这些机构因含有两个球面副,结构比较简单,但绕两球心连线自由转动的局部自由度影响高速性能。所有转动副轴线汇交一点的球面四杆机构,也是一种应用较广的空间连杆机构,如万向联轴节机构。此外,还有某些特殊空间连杆机构,如贝内特机构,其运动副轴线夹角和构件尺度要求满足某些特殊关系。
对空间连杆机构进行运动综合的基本问题是:①当主动件运动规律一定时,要求连架从动件能按若干对应位置或近似按某函数关系运动;②要求连杆能按若干空间位置姿态运动而实现空间刚体的导引;③要求连杆上某点能近似沿给定空间曲线运动。由于这些问题和平面连杆机构的综合问题相仿,所以平面的巴默斯特尔理论可解析地推广于空间刚体的导引问题和其他运动综合问题。此外尚有利用机构封闭性等同条件建立设计方程式和采用优化技术等综合方法。
spatial linkage
由若干刚性构件通过低副(转动副、移动副)联接,而各构件上各点的运动平面相互不平行的机构,又称空间低副机构。在空间连杆机构中,与机架相连的构件常相对固定的轴线转动、移动,或作又转又移的运动,也可绕某定点作复杂转动;其余不与机架相连的连杆则一般作复杂的空间运动。利用空间连杆机构可将一轴的转动转变为任意轴的转动或任意方向的移动,也可将某方向的移动转变为任意轴的转动,还可实现刚体的某种空间移位或使连杆上某点轨迹近似于某空间曲线。与平面连杆机构相比,空间连杆机构常有结构紧凑、运动多样、工作灵活可靠等特点,但设计困难,制造较复杂。空间连杆机构常应用于农业机械、轻工机械、纺织机械、交通运输机械、机床、工业机器人、假肢和飞机起落架中。
空间连杆机构的分析综合均较平面连杆机构复杂困难,这在很大程度上影响空间连杆机构的推广应用。研究空间连杆机构的方法有以画法几何为基础的图解法和运用向量、对偶数、矩阵和张量等数学工具的解析法。图解法有一定的局限性,应用较多的是便于电子计算机运算的解析法。空间连杆机构分析中重要而又困难的问题是位移分析。对多于 4杆的空间连杆机构,由输入求输出位移时因中间运动变量不易避开或消去,一般要用数值迭代法联解多个非线性方程式或求解高次代数方程式。对最难进行位移分析的空间7R机构,由输入求输出位移的代数方程式高达32次。
提出了一种可用于散粒货物仓库底开门机构的双PSSR型空间连杆机构的设计方案,分析其工作原理,建立了数学模型.基于I-DEAS创建了机构的三维几何模型,并运用ADAMS软件对机构进行了运动学仿真,得到了货仓底门的角位移曲线、角速度曲线及角加速度曲线.理论分析计算及应用软件仿真验证了此机构设计的合理性及方案的可行性.
优选机械平面连杆机构传动
该书共有11章,除绪论外,分别为:机构的组成原理、平面连杆机构分析与设计、凸轮机构及其设计、齿轮机构及其设计、轮系、其他常用机构、空间连杆机构及机器人机构、机械中的摩擦与机械效率、机械系统动力学基础、机械的平衡和机构系统的运动方案设计。
根据构件之间的相对运动为平面运动或空间运动,连杆机构可分为平面连杆机构和空间连杆机构。根据机构中构件数目的多少分为四杆机构、五杆机构、六杆机构等,一般将五杆及五杆以上的连杆机构称为多杆机构。当连杆机构的自由度为1时,称为单自由度连杆机构;当自由度大于1时,称为多自由度连杆机构。
根据形成连杆机构的运动链是开链还是闭链,亦可将相应的连杆机构分为开链连杆机构(机械手通常是运动副为转动副或移动副的空间开链连杆机构)和闭链连杆机构。单闭环的平面连杆机构的构件数至少为4,因而最简单的平面闭链连杆机构是四杆机构,其他多杆闭链机构无非是在其基础上扩充杆组而成;单闭环的空间连杆机构的构件数至少为3,因而可由三个构件组成空间三杆机构。
机构学与机械动力学
主要研究平面及空间连杆机构的运动学及动力学分析与综合(设计)的理论和方法,侧重高速机构动力平衡、弹性机构动力综合、含间隙机构动力分析与综合、机械系统非线性振动特性等前沿领域的研究。
机器人学
主要研究机器人的运动和动力分析、设计理论、方法及其应用,包括串联和并联柔性机器人动力学分析、柔性冗余度机械臂振动控制、柔性并联机器人冗余驱动规划、多柔性机器人协调操作及控制等领域。
智能结构与机械系统监控
主要研究机电自动化中的制造系统监控、智能机械结构等关键技术。涉及传感器集成检测、多信号融合、神经网络分析、智能决策以及敏捷材料的原理和应用、智能机械执行器的设计和实现等方面。
工程结构分析、CAD优化设计和智能控制
主要研究机械和一般结构、多学科的CAD优化与智能控制、结构数值分析模拟与可视化技术、工程系统运筹和应用软件、实用数学规划软件和工程应用,以及在美国著名的工程应用软件上进行二次开发。
现代测控技术与方法
主要研究机电系统健康监测、智能测试技术及信号处理以及无损检测与评价技术。包括传感器的研制、计算机测控系统、数字信号处理与特征识别、无损检测新技术及质量评价等方面的研究。
现代机电系统设计及控制
主要研究机电系统的现代设计方法及控制策略。侧重电-液伺服系统的优化设计、直线交流伺服系统的精密控制技术、液压与气动的数字控制技术及应用。
机械振动与控制
主要包括四个研究方向:(1)非线性动力学、分叉和混沌动力学;(2)非线性振动与控制;(3)机械柔性结构和流固耦合系统的非线性动力学;(4)现代设计与计算机辅助工程。主要研究机械系统,机械柔性结构和流固耦合系统的非线性动力学、分叉和混沌极其控制问题,研究高维非线性系统的全局摄动法及规范形的计算和应用问题。
新型焊接设备
本研究方向包括:(1)绿色化焊接设备:以计算机仿真为主要手段,研究新型电力电子技术、设备的可靠性与电磁兼容性技术;(2)高效化焊接设备:以焊接物理研究为基础,探索高速度和高熔敷率的焊接方法;(3)数字化焊接设备:以数字信号处理技术为基础,研究全数字化控制的焊接设备;(4)智能化焊接设备:以智能控制理论为基础,研究焊接过程质量的控制技术。
焊接机器人与焊接质量控制
本研究方向主要从事焊接机器人的应用极其整体性系统的集成。其中包括:(1)离线编程技术;(2)过程仿真与优化技术;(3)传感器与信号处理技术;(4)在线质量监控技术。
微机电系统(MEMS)技术
主要从事微机电系统(MEMS)技术极其应用、传感器技术、智能机器人技术等与机械学交叉领域的研究。
精密特种加工技术
属于现代制造技术的范畴,主要研究精密电火花加工、激光加工、超声波加工、电子束加工、离子束加工和等离子体加工等特种加工技术,涉及光机电一体化、信号的采集与分析、神经网络、智能控制、精密微机械等的机理、设计及应用等方面。