1 荷载
2 结构设计的基本要求
3 钢筋混凝土结构设计
4 体结构设计
5 钢结构设计
6 钢-混凝土混合结构设计
7 筑地基基础设计
附录……
朱炳寅,中国建筑设计研究院结构设计研究院副总工程师;第四结构设计研究室主任;教授级高级工程师;一级注册结构工程师;香港工程师学会会员。从事结构设计二十余年,作为结构设计负责人完成的主要工程有:北京名人广场写字楼、北京建宏大厦和福建广播电视中心、青藏铁路拉萨站站房、莫斯科中国贸易中心等。
随着《建筑结构设计问答及分析》作者执笔的三《建筑结构设计问答及分析》相继出版发行,即《建筑结构设计新规范综合应用手册》(第二版)、《建筑结构设计规范应用图解手册》和《建筑地基基础设计方法及实例分析》;作者博客的开通;及作者在国内主要城市的巡回宣讲.作者有机会通过博客、邮件、电话与网友和读行交流,就大家感兴趣的工程问题进行计论,现将作者对这类问题的理解和解决问题的建议归类成册,以回报广人网友和读者的信息与厚爱。其目的是对建筑结构设计人员遵从规范解决问题时有所帮助;也希望对备考注册结构工程师的考生有所启发。
第2版前言第1版前言第1章 土方工程1.1 土的分类与工程性质1.2 场地平整、土方量计算与土方调配1.3 基坑土方开挖准备与降排水1.4 基坑边坡与坑壁支护1.5 土方工程的机械化施工复习思考题第2...
建筑结构设计作为一种工程技术,具有以下特点:(1) 科学性。建筑结构设计是一种工程技术。工程技术是科学理论在改造物质世界中的具体应用。建筑结构设计是以数学、力学为理论基础,借助现代计算机...
建议去看建筑构造以及相关书籍。不难的。
柜号 序号 G1 1 G1 2 G1 3 G2 4 G2 5 G2 6 G2 7 G2 8 G2 9 G1 10 G2 11 G2 12 G2 13 G2 14 G1 15 G1 16 G1 17 G2 18 G2 19 G2 20 G1 21 G3 22 G3 23 G3 24 G3 25 G3 26 G3 27 G1 28 G1 29 G3 30 G3 31 G2 32 G2 33 G2 34 G2 35 G2 36 G2 37 G2 38 下右 39 下右 40 下右 41 下右 42 下右 43 下右 44 下右 45 下右 46 下右 47 下右 48 下右 49 下右 50 下右 51 下右 52 下右 53 下左 54 下左 55 下左 56 下左 57 下左 58 下左 59 下左 60 下左 61 下左 62 下左 63 下左 64 下左 65 下左 66 下左 67 下
1 工程常用图书目录(电气、给排水、暖通、结构、建筑) 序号 图书编号 图书名称 价格(元) 备注 JTJ-工程 -24 2009JSCS-5 全国民用建筑工程设计技术措施-电气 128 JTJ-工程 -25 2009JSCS-3 全国民用建筑工程设计技术措施-给水排水 136 JTJ-工程 -26 2009JSCS-4 全国民用建筑工程设计技术措施-暖通空调 ?动力 98 JTJ-工程 -27 2009JSCS-2 全国民用建筑工程设计技术措施-结构(结构体系) 48 JTJ-工程 -28 2007JSCS-KR 全国民用建筑工程设计技术措施 节能专篇-暖通空调 ?动力 54 JTJ-工程 -29 11G101-1 混凝土结构施工图平面整体表示方法制图规则和构造详图(现浇混凝土框架、剪力墙、框架 -剪力墙、框 支剪力墙结构、现浇混凝土楼面与屋面板) 69 代替 00G101
音频测量一般包括信号电压、频率、信噪比、谐波失真等基本参数。大部分音频参数都可以由这几种基本参数组合而成。音频分析可以分为时域分析、频域分析、时频分析等几类。由于信号的谐波失真对于音频测量比较重要,因此将其单独归类为失真分析。以下分别介绍各种音频参数测量和音频分析。
音频测量中需要测量的基本参数主要有电压、频率、信噪比。电压测试可以分为均方根电压(RMS)、平均电压和峰值电压等几种。
频率是音频测量中最基本的参数之一。通常利用高频精密时钟作为基准来测量信号的频率。测量频率时,在一个限定的时间内的输入信号和基准时钟同时计数,然后将两者的计数值比较后乘以基准时钟的频率就得到信号频率。随着微处理芯片的运算速度的提高,信号的频率也可以利用快速傅立叶变换通过软件计算得到。
信噪比是音频设备的基本性能指标,是信号的有效电压与噪声电压的比值。信噪比的计算公式为:
2-1
在实际测量中,为方便起见,通常用带有噪声的信号总电压代替信号电压计算信噪比。
时域分析通常是将某种测试信号输入待测音频设备,观察设备输出信号的时域波形来评定设备的相关性能。最常用的时域分析测试信号有正弦信号、方波信号、阶跃信号及单音突变信号等。例如将正弦信号输入设备,观察输出信号时域波形失真就是一种时域分析方法。
方波分析具有良好的突变性及周期性,通过观察设备对方波信号的输出信号波形能够很好的检测设备的各项性能,因此方波信号成为最常用的时域分析信号。
阶跃信号分析比较简单,主要用来检测音频设备对于信号突变的响应灵敏度。阶跃信号分析的参数通常两个,就是阶跃响应信号的上升时间和脉冲宽度。上升时间越小,设备对于信号突变的响应越灵敏,瞬态特性越好;脉宽越小,设备的阻尼特性越好,系统越稳定。
正弦信号在某个时刻峰值突然升高,形成突变,就是单音突变信号。由于单音突变信号的能量集中在一个很窄的频率范围,因此常用单音突变信号检测音频设备在某个特定频率的响应情况。单音突变信号的主要用途是快速判定某些音频设备,例如扬声器的阻尼特性等。
频域分析是音频分析的重要内容,频域分析的主要依据是频率响应特性曲线图。前面提到的正弦检测、脉冲检测及最大长度序列信号检测都能够得到设备的频率响应。频率响应曲线图反映了音频设备在整个音频范围内的频率响应的分布情况。一般来说曲线峰值处的频率成分,回放声压大、声压强;曲线谷底处频率成分声压小、声音弱。若波峰和波谷起伏太大,则会造成较严重的频率失真。
时频特性描述了音频设备在时间轴上随着时间的变化其频域特性的变化情况。时频特性不仅在频率的变化过程中描述了音频设备的响应状态,而且还在时间的变化过程中描述了音频设备的响应状态,也就是从三维的角度全面地描述了音频设备的响应特性。对于放音设备而言,主观听感的评述,如低音是否干净,背景是否无损,层次是否分明,音场的深浅等均与音频设备的时频特性均有密切关系。音频设备的时频特性是客观评价音频设备性能优劣的一个很重要的方面。
音频设备的失真包括谐波失真、互调失真、相位失真及瞬态失真等几类。音频测量中最重要的是谐波失真,谐波失真,简单地说就是声音信号经音频设备重放后多出来的额外的谐波成分。从听众的角度看,不同的发声物体所发出的声音是由不同的基波和谐波构成的,听众可以根据声音的特性分辨出发声的物体。如果功率放大器将某种乐器所发出的乐音(乐音由基波和谐波组成)放大,经扬声器放音后,对基波和各次谐波的波形形状、幅值和相位均能无失真的重现出来,则可以认为是高质量的放音;否则,扬声器所放出的声音听起来烦躁、别扭,则谐波失真已经达到无法忍受,甚至使人无法分辨发声乐器的种类。因此,谐波失真是音频设备的重要性能指标。
谐波失真的测量方法有两种,一种是以正弦信号输入待测设备,然后分析设备响应信号的频率成分,可以得到谐波失真。另一种更简单的测量方法是首先利用带阻滤波器滤除响应信号中的基频成分,然后直接测量剩余信号的电压,将其与原响应信号作比较,就可以得到谐波失真。显然第二种方法得到的谐波失真是THD N,由于采用了信号的总电压值代替了基频分量电压值,因此得到的谐波失真比实际值偏小,且实际的谐波失真越大,误差越大。
在实际的音频测量时,通常在一定的频率范围内选取若干个频率点,分别测量出各点的谐波失真,然后将各谐波失真数值以频率为横坐标连成一条曲线,称为谐波失真曲线。
音频测量一般包括信号电压、频率、信噪比、谐波失真等基本参数。大部分音频参数都可以由这几种基本参数组合而成。音频分析可以分为时域分析、频域分析、时频分析等几类。由于信号的谐波失真对于音频测量比较重要,因此将其单独归类为失真分析。以下分别介绍各种音频参数测量和音频分析。
音频测量中需要测量的基本参数主要有电压、频率、信噪比。电压测试可以分为均方根电压(RMS)、平均电压和峰值电压等几种。
频率是音频测量中最基本的参数之一。通常利用高频精密时钟作为基准来测量信号的频率。测量频率时,在一个限定的时间内的输入信号和基准时钟同时计数,然后将两者的计数值比较后乘以基准时钟的频率就得到信号频率。随着微处理芯片的运算速度的提高,信号的频率也可以利用快速傅立叶变换通过软件计算得到。
信噪比是音频设备的基本性能指标,是信号的有效电压与噪声电压的比值。信噪比的计算公式为:
2-1
在实际测量中,为方便起见,通常用带有噪声的信号总电压代替信号电压计算信噪比。
时域分析通常是将某种测试信号输入待测音频设备,观察设备输出信号的时域波形来评定设备的相关性能。最常用的时域分析测试信号有正弦信号、方波信号、阶跃信号及单音突变信号等。例如将正弦信号输入设备,观察输出信号时域波形失真就是一种时域分析方法。
方波分析具有良好的突变性及周期性,通过观察设备对方波信号的输出信号波形能够很好的检测设备的各项性能,因此方波信号成为最常用的时域分析信号。
阶跃信号分析比较简单,主要用来检测音频设备对于信号突变的响应灵敏度。阶跃信号分析的参数通常两个,就是阶跃响应信号的上升时间和脉冲宽度。上升时间越小,设备对于信号突变的响应越灵敏,瞬态特性越好;脉宽越小,设备的阻尼特性越好,系统越稳定。
正弦信号在某个时刻峰值突然升高,形成突变,就是单音突变信号。由于单音突变信号的能量集中在一个很窄的频率范围,因此常用单音突变信号检测音频设备在某个特定频率的响应情况。单音突变信号的主要用途是快速判定某些音频设备,例如扬声器的阻尼特性等。
频域分析是音频分析的重要内容,频域分析的主要依据是频率响应特性曲线图。前面提到的正弦检测、脉冲检测及最大长度序列信号检测都能够得到设备的频率响应。频率响应曲线图反映了音频设备在整个音频范围内的频率响应的分布情况。一般来说曲线峰值处的频率成分,回放声压大、声压强;曲线谷底处频率成分声压小、声音弱。若波峰和波谷起伏太大,则会造成较严重的频率失真。
时频特性描述了音频设备在时间轴上随着时间的变化其频域特性的变化情况。时频特性不仅在频率的变化过程中描述了音频设备的响应状态,而且还在时间的变化过程中描述了音频设备的响应状态,也就是从三维的角度全面地描述了音频设备的响应特性。对于放音设备而言,主观听感的评述,如低音是否干净,背景是否清晰,层次是否分明,音场的深浅等均与音频设备的时频特性均有密切关系。音频设备的时频特性是客观评价音频设备性能优劣的一个很重要的方面。
音频设备的失真包括谐波失真、互调失真、相位失真及瞬态失真等几类。音频测量中最重要的是谐波失真,谐波失真,简单地说就是声音信号经音频设备重放后多出来的额外的谐波成分。从听众的角度看,不同的发声物体所发出的声音是由不同的基波和谐波构成的,听众可以根据声音的特性分辨出发声的物体。如果功率放大器将某种乐器所发出的乐音(乐音由基波和谐波组成)放大,经扬声器放音后,对基波和各次谐波的波形形状、幅值和相位均能无失真的重现出来,则可以认为是高质量的放音;否则,扬声器所放出的声音听起来烦躁、别扭,则谐波失真已经达到无法忍受,甚至使人无法分辨发声乐器的种类。因此,谐波失真是音频设备的重要性能指标。
谐波失真的测量方法有两种,一种是以正弦信号输入待测设备,然后分析设备响应信号的频率成分,可以得到谐波失真。另一种更简单的测量方法是首先利用带阻滤波器滤除响应信号中的基频成分,然后直接测量剩余信号的电压,将其与原响应信号作比较,就可以得到谐波失真。显然第二种方法得到的谐波失真是THD+N,由于采用了信号的总电压值代替了基频分量电压值,因此得到的谐波失真比实际值偏小,且实际的谐波失真越大,误差越大。
在实际的音频测量时,通常在一定的频率范围内选取若干个频率点,分别测量出各点的谐波失真,然后将各谐波失真数值以频率为横坐标连成一条曲线,称为谐波失真曲线。
音频是多媒体中的一种重要媒体。我们能够听见的音频信号的频率范围大约是20Hz-20kHz,其中语音大约分布在200Hz-3kHz之内,而音乐和其他自然声响是全范围分布的。声音经过模拟设备记录或再生,成为模拟音频,再经数字化成为数字音频。这里所说的音频分析就是以数字音频信号为分析对象,以数字信号处理为分析手段,提取信号在时域、频域内一系列特性的过程。
各种特定频率范围的音频分析有各自不同的应用领域。例如,对于200-3000Hz之间的语音信号的分析主要应用于语音识别,其用途是确定语音内容或判断说话者的身份;而对于20-20000Hz之间的全范围的语音信号分析则可以用来衡量各类音频设备的性能。所谓音频设备就是将实际的声音拾取到将声音播放出来的全部过程中需要用到的各类电子设备,例如话筒、功率放大器、扬声器等,衡量音频设备的主要技术指标有频率响应特性、谐波失真、信噪比、动态范围等。