中文名 | 基于磁力耦合径向拉-压激励的回转式压电俘能器研究 | 项目类别 | 面上项目 |
---|---|---|---|
项目负责人 | 张忠华 | 依托单位 | 浙江师范大学 |
本项目针对现有旋转式压电俘能器可靠性低、转速适应性低、发电能力弱等弊端,以磁力耦合径向拉-压激励下预弯压电振子伸缩振动的工作机理与内在规律为研究对象,目的是通过磁力耦合拉-压激励预弯压电振子并使之产生沿旋转体径向伸缩振动发电,建立了压电俘能器在旋转磁铁激励下一般周期力的数学模型,开展了预弯梁压电振子的理论与仿真分析,获得了磁力耦合下预弯压电振子的初始工作位置对压电能量收集器的影响规律,试验得到了旋磁激励下弯曲压电振子的发电特性,在此基础上进一步探究了旋磁激励式压电预弯梁俘能器机理并通过试验获得了俘能器输出性能的影响规律,项目执行期间,课题组成员在原有实施方案基础上又提出了多种新结构新原理的旋磁激励式压电俘能器,包括:磁力夹持的旋磁激励压电俘能器、可调频旋磁激励式压电发电机、基于压电简支梁拉伸调频的旋磁激励式发电机、错位旋磁激励式压电俘能器等。四年来,本项目研究成果已经在国内外公开发表学术论文17篇,其中SCI检索期刊7篇、EI检索期刊8篇(1篇录用),获得发明专利17项、申请发明专利5项,3项专利技术转让66万元,国际会议分组报告2次,培养硕士研究生4名,依托本项目2016年项目负责人获得国家公派出国留学资格赴英国南安普顿大学访学一年,项目负责人也由副教授晋升为教授,并获聘本校“双龙学者”特聘教授。 2100433B
提出利用磁力耦合拉-压激励预弯压电振子并使之产生沿旋转体径向伸缩振动发电,研究这种磁力耦合径向拉-压激励及发电能力的形成理论与方法,进而构造高可靠性、宽频带、轴向占用空间小的新型回转式压电俘能器,用于航空航天/大型机械等非结构环境中旋转体的自供电传感监测。主要内容:统筹考虑俘能器系统要素间耦合关系,建立系统动力学/运动学模型,通过模拟仿真获得磁场非线性耦合特性及其对激振力和部件相对运动关系的影响规律、以及合理的系统参数匹配关系;研究压电振子的径向振动形态及其能量转换特性,分析机械单元结构、电控单元电路形式/器件参数等对发电能力/效率的影响规律,提取制约预弯压电振子动态响应速度及有序径向往复振动的关键要素,揭示磁力耦合拉-压激励形成宽频带发电能力的本质机理;进行两类回转式压电俘能器样机制作与试验,获得最优激励方案、机械结构及能量回收方案;试制样机至少8台,提供设计方法及关键制造技术参数。
GSLY这系列的格栅机质量不错
“回转式清污机”的结构和功能的介绍工作原理:回转式清污机是集拦污栅和清污机于一体的连续清污装置。以拦污栅为基础,通过绕栅回转链条将清污齿耙驱动,实现拦污及清清目的。组成部份:拦污栅体,回转齿耙,驱动传...
回转式格栅除污机要根据格栅机设备沟宽、沟深、耙齿间距、过水流量及材质来选型,绿烨环保给您建议。
磁场计算和磁力转矩计算是磁力泵设计的一个关键步骤。针对径向充磁磁力耦合器内、外磁转子之间存在较大气隙,而内外磁转子具有规则的边界条件的特点,采用解析方法计算内、外磁转子产生的气隙磁场,再利用气隙的合成磁场完成磁力耦合器的转矩计算,绘制了矩角特性曲线。
研究了由金属及压电陶瓷构成的复合型压电俘能器的动力学及力电转换特性。基于薄板小挠度理论,对复合型压电俘能器进行振动分析。确定了在周期性均布载荷作用下该结构所产生电压、功率与其几何参数之间的关系。同时结合实验,研究了不同负载电阻情况下压电俘能器的输出功率并讨论了能量转换效率问题。并分析了压电俘能器的几何参数、不同金属材料对力电转换特性的影响。
研究表明,当压电俘能装置处于共振状态时,压电材料的形变量达到峰值,因压电效应而产生的电能输出同时达到峰值。本项目提出了可调频技术,使压电俘能装置在一定频率宽度内均能处于共振状态,拓宽了压电俘能器的工作频率,大大提高了压电俘能器的应用范围。 本项目的主要研究内容包括: A. 建立高能效的梁结构和电场边界条件驱动方式。 B.开发微功耗的频率检测方法。 C.研究低能耗的控制器及精确闭环调频方案。 本项目的主要研究结果及意义 关于研究内容A,运用理论力学、振动力学等知识对悬臂梁压电双晶片的固有频率进行了理论分析和推导,求得悬臂梁一阶固有频率与各尺寸参数和材料属性的关系式,并从该俘能结构出发,提出了四种可用于可调频的假想结构,分别为d31贴片式结构、d31嵌入式结构、d33压电片结构和d33压电柱结构。对以上四种结构进行ANSYS有限元分析,仿真不同结构下压电元件处于不同的电场边界条件得出各自不同的刚度特性表现。根据仿真结果搭建实验平台测试仿真结果,通过统筹改变压电片边界电压条件实现压电悬臂梁固有频率的改变。研究结果表明,结果表明使用d31嵌入式结合形式可以比使用d31表面粘贴式结合形式得到更高的频率变化率,频率相对变化率可达4.42%。使用d33压电柱结合形式可以比使用d31嵌入式结合形式得到更高的频率变化率,频率相对变化率可达28.59%。这部分结论和方案可以进一步进行推广,对实现压电悬臂梁自调频有重要意义。 针对研究内容B,我们设计了一套与之相对应的频率检测系统来对压电悬臂梁间歇进行有效的频率检测。在检测系统中,我们采取的方案是:使用霍尔元件做为传感器,将压电悬臂梁自由端的位移量转化为电压量输入到控制器中。频率检测范围为20 ~ 200 Hz,检测精度为 0.2 Hz。该频率检测方案可以推广到其他领域,该频率检测软件部分已申请软件著作权。 针对研究内容C,我们采用微功耗控制器在间歇工作方式下实现微功耗,通过开闭压电片两端的电子开关改变其电场边界条件可实现频率调节,将多个压电片电场边界条件编写成与频率对应的状态控制码储存到控制器中,当外界频率改变时,通过闭环实施对应状态控制码使压电悬臂梁重新回归到共振状态。 在项目执行过程中,也开展了一些原计划没有列入的工作,针对新型可调频结构压电俘能器输出能量进行了测量,针对压电输出电压特点提出了DCM模式下的Boost电路,能高效的整 2100433B
大多数基于振动的俘能器都采用弹簧质量阻尼结构并使该结构的共振频率与俘能器周围环境振动的频率一致。只要这两个频率存在很小的偏差,俘能器的效率就会显著降低。在实际应用中俘能器周围环境振动频率通常是在一定范围内变化,极大地影响了俘能器的效率。本课题提出一种新型的自调频压电俘能技术,使得俘能器结构的共振频率可以根据周围环境的振动频率自动调整。课题以悬臂梁结构来解释该技术,其技术特点体现在三个方面:第一是高能效的调频结构,梁结构由基本梁和与基本梁按一定方式耦合的分布式压电片构成,改变任一压电片的电场边界条件即可改变梁结构的共振频率;第二是高的材料利用率,所有的压电片都在作为电场边界条件驱动元件的同时可作为俘能元件;第三是低能耗的测频技术,从传感器输出去分析频率变化的方向,目的在于降低频率检测系统的复杂性和能耗,提高净俘能。本课题的研究成果将大大提高压电俘能器在实际工程中应用的可能性和适应性。
张拉整体结构是一类轻质、网格状的空间结构体系,由预拉伸的绳和预压缩的杆通过球铰连接而成,在航天航空、土木建筑、仿生机械、生物力学等领域具有许多重要应用,被誉为“未来的结构体系”。张拉整体结构的力学性质与几何外形密切相关,因此结构的构型控制对实现其使用功能具有重要意义。本项目在结构力学与智能材料学的基础上,拟对压电式智能张拉整体结构的力电耦合响应进行研究,将涉及结构构型设计、变形分析、驱动控制等研究环节,目标是建立适用于含压电元件的张拉整体结构力电耦合变形行为分析的理论框架,为此,将开展结构的力电耦合理论研究,发展非线性数值求解方法,实测典型结构的耦合响应,并进一步探索压电式智能张拉整体结构的自校正、自适应、自修复等智能化功能,以期实现结构构型的智能控制。本项目的实施将有助于深入理解张拉整体结构在多场耦合作用下的变形响应特性,研究成果将为智能张拉整体结构的实际应用提供重要的理论参考。