在铁路非电化牵引区段的站内轨道电路,大量使用50HZ交流连续式轨道电路(俗称480轨道电路)。480轨道电路的信号特征是单一的:接收端的工作状态只取决接收端信号的幅值,较二元型相敏轨道电路接收器的安全性差,目前采用的微电子型的50HZ相敏轨道接收器较JZXC-480型轨道继电器,提高了返还系数和绝缘破损防护能力。
为满足铁路信号产品高可靠、高安全的发展需求以及城市交通快速发展的需要,研制出具有高安全性、可靠性、抗干扰能力强的二取二安全冗余结构电子接收器,沈阳铁路信号有限责任公司立项研制JXG-50S型相敏轨道电路接收器
在铁路非电化牵引区段的站内轨道电路,大量使用50HZ交流连续式轨道电路(俗称480轨道电路)。480轨道电路的信号特征是单一的:接收端的工作状态只取决接收端信号的幅值,较二元型相敏轨道电路接收器的安全性差,目前采用的微电子型的50HZ相敏轨道接收器较JZXC-480型轨道继电器,提高了返还系数和绝缘破损防护能力。
为满足铁路信号产品高可靠、高安全的发展需求以及城市交通快速发展的需要,研制出具有高安全性、可靠性、抗干扰能力强的二取二安全冗余结构电子接收器,沈阳铁路信号有限责任公司立项研制JXG-50S型相敏轨道电路接收器
JXG-50S型相敏轨道电路接收器由相敏轨道电路接收器、调相防雷器、报警盒组成。
相敏轨道电路接收器由轨道采集模块、局部信号采集模块、电源模块、芯片处理模块以及输出电路模块组成;调相防雷器由隔离变压器及防雷元件组成;报警盒由采集模块、芯片处理模块以及输出模块组成。产品如图1所示。
图1 JXG-50S型相敏轨道电路接收器
JXG-50S型相敏轨道电路接收器主要应用于城市铁路、地铁工程车辆段及厂矿铁路非电化牵引区段的站内轨道电路。
相敏轨道电路接收器通过采集钢轨上的轨道信号、电源屏传递来的局部信号,对两路信号进行处理、计算、判断出轨道处于调整或分路状态,并通过轨道状态控制轨道继电器动作。
调相防雷器主要功能对轨道信号进行隔离防护以及雷电防护,增加调整电路,以解决部分轨道区段调整不出的现象。
报警盒检查一个组合四个轨道电路接收端八台接收器的输出状态,若同一个接收端的两台相敏轨道电路接收器输出不一至时,报警盒延时报警,无输出的相敏轨道电路接收器对应的报警盒上发光管亮红灯,同时报警盒的报警节点导通,使报警继电器吸起。
JXG-50S型相敏轨道电路接收器由相敏轨道电路接收器、调相防雷器、报警盒组成。
相敏轨道电路接收器由轨道采集模块、局部信号采集模块、电源模块、芯片处理模块以及输出电路模块组成;调相防雷器由隔离变压器及防雷元件组成;报警盒由采集模块、芯片处理模块以及输出模块组成。产品JXG-50S型相敏轨道电路接收器
简单的无线声音接收器可以参考如下电路。音频电流是无法作为无线电波发射的,必须经过调制为射频才能以无线电的形式发射。常见的调制方式是无线广播电台中的,调频、调幅广播。即在收音机上标记为 AM&...
如果长虹电视机支持无线联网功能,但是没有内置wifi模块,一般可以通过连接USB WIFI接收器(即无线网卡)来连接无线网络;WIFI接收器的型号一般要与电视机的型号相匹配,尽量使用指定型号的WIFI...
JXG-50S型相敏轨道电路接收器主要应用于城市铁路、地铁工程车辆段及厂矿铁路非电化牵引区段的站内轨道电路。
相敏轨道电路接收器通过采集钢轨上的轨道信号、电源屏传递来的局部信号,对两路信号进行处理、计算、判断出轨道处于调整或分路状态,并通过轨道状态控制轨道继电器动作。
调相防雷器主要功能对轨道信号进行隔离防护以及雷电防护,增加调整电路,以解决部分轨道区段调整不出的现象。
报警盒检查一个组合四个轨道电路接收端八台接收器的输出状态,若同一个接收端的两台相敏轨道电路接收器输出不一至时,报警盒延时报警,无输出的相敏轨道电路接收器对应的报警盒上发光管亮红灯,同时报警盒的报警节点导通,使报警继电器吸起。
实用标准文案 精彩文档 25Hz相敏轨道电路 一、25Hz相敏轨道电路的制式特点 1、用 25Hz电源作为轨道电路的信号源。具有 频率稳定性 ,恒等 于工频的一半。(25Hz=50Hz/2) 2、用 25Hz交流二元二位轨道继电器。 此继电器不仅有 频率的选 择性而且具有 相位的选择性 。它的相位选择性可以保证对绝缘节短路 有可靠的检查。 3、轨道继电器有两个线圈即轨道、局部线圈( 局部超前轨道 90°)。抗干扰能力强。 二、25Hz相敏轨道电路的组成 1、JRJC-70/240 二元二位继电器 1)结构:该继电器轨道线圈的直流电阻为 70欧,局部线圈的直 25HZ 110V UJ 1A BE-25 BG1-65/25 R RD-5A 轨道分频器 50HZ/220V RD-1A UJ导前 UG90o 25HZ 220V UG C-1μ f JRJC-240/70
单轨条50Hz相敏轨道电路在城市轨道交通线路的车辆段和停车场及正线的道岔区得到了广泛的应用。本文根据津滨轻轨工程的实际经验对单轨条50Hz相敏轨道电路的电路原理及在工程设计中的几个问题进行了探讨。
相敏轨道电路是指信号电源为25HZ交流电,接收器为交流双元双位继电器的交流轨道电路制式。双元指继电器线圈有两个单元,双位指继电器动作有两个位置。其轨道电路接收继电器的轨道线圈,接收经钢轨传输的25Hz信号电流,而局部线圈由25Hz局部分频器供电,它的相位超前信号电流90°。
所以接收端轨道继电器不仅可以反映轨道区段内电流或电压的传输情况,而且以其局部线圈的电压相位为基准,鉴别轨道线圈中电流的相位,具有相敏特性。相敏交流轨道电路的抗干扰能力强,更适用于电力牵引区段,以克服牵引电流的谐波干扰。2100433B
《25Hz相敏轨道电路原理、维护和故障处理》从电路原理、维护标准、维护方法、故障判断分析等方面,对电气化铁路站内25 Hz相敏轨道电路进行了简单明了的叙述,便于现场信号工学习掌握25 Hz相敏轨道电路的基本维护要领,便于现场车间技术人员快速掌握设备发生问题后的解决方法。《25Hz相敏轨道电路原理、维护和故障处理》可供铁路信号现场技术人员学习和参考。
1 迂回回路存在的安全隐患
我国电气化铁路站内绝大多数采用25 Hz相敏轨道电路,这种轨道电路工作性能稳定、节省电能,对低道床道砟电阻适应能力强,可以准确地进行理论验算,具有和移频、UM71/ZPW-2000机车信号信息实现叠加和预叠加性能,抗干扰方面能适应万吨重载牵引,因此得到大面积推广使用。
但在2004年中国铁道出版社出版的(25Hz相敏轨道电路》主要技术指标第7条中指出:97型25 Hz相敏轨道电路“在无迂回回路的条件下,任何故障均有可靠的分路检查”。也就是说,在有迂回回路存在时,97型25 Hz相敏轨道电路不能保证有可靠的分路检查。经分析,问题主要是对电气化区段牵引返回电流轨道网的技术结构、技术要求和技术管理的研究不到位,以及牵引返回电流轨道网无可靠的依据、规范和标准,造成了轨道网设施相互连接(扼流、连接线、回流线、吸上线、接地线、等电位线、贯通线等),从而构成了迂回回路,使25 Hz相敏轨道电路在有迂回回路的情况下,送、受端扼流变压器同侧双断线时失去分路检查。
2 迂回回路举例分析
如图1所示,在电气化牵引区段,为了使回归牵引电流畅通无阻地流回牵引变电所,相邻轨道电路的扼流变压器中点需相互连接,且由于车站两端相邻正线扼流变压器中点用等电位线(横向连接线)相连,以及吸上线、回流线的相互连接,形成了第3轨迂回回路。当I G送、受扼流变压器连接线同侧双断线(如图1中A、B点所示),且有车占用情况下,轨道继电器有可能因迂回回路的存在而错误吸起,失去分路检查。
图2也是一个有迂回回路存在时,可能在轨道电路不完整情况下失去分路检查的例子。
图2中虚线为迂回径路, I G区段轨道继电器在有车占用或断轨的情况下,信号电流可能经迂回电路而使轨道继电器错误吸起。这并非轨道电路制式本身带来的问题,而是由迂回回路造成的。
3 解决方案
针对迂回回路存在的问题,曾有相关技术人员提出从工程设计与施工出发,减少或断开贯通地线、等电位线以及吸上线的连接。这些方案大多存在一定的局限性,且与现有相关规定产生冲突,或是由于现在尚无相关标准的指导而无法实施。
经翻阅相关资料时,发现俄罗斯曾提出过在交流电化区段使用“消除音频轨道电路不平衡电流的扼流圈”,并得到交通部电务局的批准。该方案在“ATHC” 杂志1999年11月上做了介绍。该扼流圈采用并联的方式,在音频轨道电路中专门作为连通轨道牵引电流返还网,平衡牵引电流不对称干扰,用作中心接地网络,使形成的第3轨迂回不影响音频轨道电路的断线检查(音频轨道电路的扼流中心不连接)。该扼流圈对音频频率为高阻,对50 Hz牵引电流则保持低阻,不降低轨道返还网的低阻性。其实质在于通过增加额外的扼流圈连通牵引电流,分解原音频轨道电路扼流变压器,达到既传输牵引电流,又传输信号电流的目的,巧妙解决了迂回回路带来的问题。
从改造现场信号设备的角度出发,以利旧现场既有设备为前提,减少改造后轨道电路的调整,在迂回回路存在的条件下,切断迂回回路对轨道电路信号的影响。参考俄罗斯关于迂回回路相关问题的解决方案,认为当前最为简单、有效的方案是分解原扼流变压器,既传输牵引电流,又传输信号电流,设置专门用于导通牵引电流的设备。同时,为了使该设备的增加对原轨道电路参数的影响降至最低,还需将其25 Hz阻抗提高至足够大。为此,提出了在轨道电路受电端并接高阻电抗器的方案,同时经过理论计算及试验验证,将其25 Hz阻抗标准定为不小于15 Q,则因其25 Hz阻抗远高于轨道电路终端阻抗,所以高阻电抗器的增加对原轨道电路参数影响极小。
改造示意图如图3所示。
将高阻电抗器牵引侧两端子分别与2根钢轨相连,然后再将相邻区段扼流变压器中心点连接至高阻电抗器牵引侧中心点。目前该方案已在西安铁路局罗敷站和长陵站先后上道,成功解决了改造区段因迂回回路的存在,造成轨道电路送、受端扼流变压器同侧双断线时失去分路检查的问题
4 结束语
采用高阻电抗器的方案可简单、有效地解决25 Hz相敏轨道电路在有迂回回路的情况下,送、受端扼流变压器同侧双断线失去分路检查的问题,有利于提高信号设备的安全性,保证行车安全。同时,该方案也为当前客运专线建设中综合接地带来的大量迂回回路找到了解决办法。