聚吡咯

聚吡咯是一种常见的导电聚合物。纯吡咯单体常温下呈现无色油状液体,是一种C,N五元杂环分子,沸点是129.8℃,密度是0.97g/cm 3,微溶于水,无毒。

聚吡咯基本信息

中文名 聚吡咯 外文名 polypyrrole
沸    点 129.8 ℃ 水溶性 微溶于水
密    度 0.97 g/cm³ 外    观 常温下呈现无色油状液体
应    用 导电材料

聚吡咯可用于生物、离子检测、超电容及防静电材料及光电化学电池的修饰电极、蓄电池的电极材料。此外,还可以作为电磁屏蔽材料和气体分离膜材料,用于电解电容、电催化、导电聚合物复合材料等,应用范围很广。具体如下:

(1)离子交换树脂:相比于传统的离子交换树脂,这种材料把电化学和离子交换结合在一起,能方便的再生和减小能耗、降低污染。

(2)生物材料:PPy具有良好的生物相容性,在电刺激下导电聚合物可以调节细胞的贴附、迁移、蛋白质的分泌与DNA的合成等过程,使其在生物医学领域有着广泛的应用前景。

(3)质子交换膜:质子交换膜作为质子交换膜燃料电池的核心部件,直接决定着燃料电池的性能。将PPy引入其中制备复合型质子交换膜有助于提高复合膜的热稳定性、阻醇性和溶胀性等。

(4)电催化:PPy膜具有独特的掺杂和脱掺杂性能,可以有针对性的掺杂进许多具有对反应物有催化作用的分子或离子,提供电催化效率和实际应用价值。

(5)二次电池的电极材料:PPy具有较高的电导率、环境稳定性好、可逆的电化学氧化还原特性以及较强的电荷贮存能力,是一种理想的聚合物二次电池的电极材料

(6)金属防腐:PPy膜对金属的保护起到钝化和屏蔽作用,提高了金属基体的腐蚀电位,降低了腐蚀速率。

聚吡咯造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
酯瓦 品种:酯瓦;颜色:亮红 查看价格 查看价格

13% 滁州飞宇环材科技实业有限公司
酯瓦 品种:酯瓦;颜色:绿色 查看价格 查看价格

13% 滁州飞宇环材科技实业有限公司
酯瓦 品种:酯瓦;颜色:灰色 查看价格 查看价格

13% 滁州飞宇环材科技实业有限公司
酯瓦 品种:酯瓦;颜色:枣红 查看价格 查看价格

13% 滁州飞宇环材科技实业有限公司
酯瓦 品种:酯瓦;颜色:橘黄 查看价格 查看价格

13% 滁州飞宇环材科技实业有限公司
酯瓦 品种:酯瓦;颜色:蓝色 查看价格 查看价格

13% 滁州飞宇环材科技实业有限公司
品种: 查看价格 查看价格

雪梅

13% 杭州萧山雪梅花草园
酯瓦 品种:酯瓦;颜色:亮红 查看价格 查看价格

13% 滁州飞宇环材科技实业有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
抛光砖(品微粉) 600×600 查看价格 查看价格

茂名市2011年10月信息价
抛光砖(品微粉) 800×800 查看价格 查看价格

茂名市2011年10月信息价
抛光砖(品微粉) 600×600 查看价格 查看价格

茂名市2011年9月信息价
抛光砖(品微粉) 800×800 查看价格 查看价格

茂名市2011年9月信息价
抛光砖(品微粉) 1000×1000 查看价格 查看价格

茂名市2011年9月信息价
抛光砖(品微粉) 500×500 查看价格 查看价格

茂名市2011年8月信息价
抛光砖(品微粉) 1000×1000 查看价格 查看价格

茂名市2011年7月信息价
抛光砖(品微粉) 500×500 查看价格 查看价格

茂名市2011年6月信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
外墙喷<盈粒>保温膜 粒|30000平方个 1 查看价格 东莞市常平宏汇英保温建材厂 广东  深圳市 2014-12-10
抗裂纤维(苯烯合成纤维) 苯烯合成纤维|21078.134m³ 3 查看价格 广州市启华化工有限公司 全国   2020-01-07
可复涂硅氨烷面漆 可复涂硅氨烷面漆|10000kg 1 查看价格 山东云涂新材料科技有限公司广东办事处 广东   2022-10-13
氰氨小便器隔断 氰氨小便器隔断|30m² 3 查看价格 广州市瑞美家建材有限公司 广东   2022-08-05
四氢呋喃聚醚多元醇 四氢呋喃聚醚多元醇|1t 1 查看价格 济宁百川化工有限公司 全国   2019-05-29
丙烯酸硅氧烷漆 丙烯酸硅氧烷漆|1000kg 1 查看价格 佛山市华士博涂料有限公司 广东  广州市 2015-06-16
双组份胺固化环氧漆 双组份胺固化环氧漆|100000kg 1 查看价格 上海汇丽牌深圳经销商 广东  珠海市 2010-12-29
氰氨卫生间隔板 氰氨卫生间隔板|75m² 1 查看价格 深圳市南山区鸿河家具厂 广东  中山市 2009-12-04

纯吡咯单体常温下呈现无色油状液体,是一种C,N五元杂环分子,沸点是129.8℃,密度是0.97g/cm,微溶于水,无毒。

性质:研究和使用较多的一种杂环共轭型导电高分子,通常为无定型黑色固体,以吡咯为单体,经过电化学氧化聚合制成导电性薄膜,氧化剂通常为三氯化铁、过硫酸铵等。或者用化学聚合方法合成,电化学阳极氧化吡咯也是制备聚吡咯的有效手段。是一种空气稳定性好,易于电化学聚合成膜的导电聚合物,不溶不熔。它在酸性水溶液和多种有机电解液中都能电化学氧化聚合成膜,其电导率和力学强度等性质与电解液阴离子、溶剂、pH值和温度等聚合条件密切相关。导电聚吡咯具有共轭链氧化、对应阴离子掺杂结构,其电导率可达102~103S/cm,拉伸强度可达50~100MPa及很好的电化学氧化-还原可逆性。导电机理为:PPy结构有碳碳单键和碳碳双键交替排列成的共轭结构,双键是由σ电子和π电子构成的,σ电子被固定住无法自由移动,在碳原子间形成共价键。共轭双键中的2个π电子并没有固定在某个碳原子上,它们可以从一个碳原子转位到另一个碳原子上,即具有在整个分子链上延伸的倾向。即分子内的π电子云的重叠产生了整个分子共有的能带,π电子类似于金属导体中的自由电子。当有电场存在时,组成π键的电子可以沿着分子链移动。所以,PPy是可以导电的。在聚合物中,吡咯结构单元之间主要以α位相互联接,当在α位有取代基时聚合反应不能进行。用电化学氧化聚合方法可以在电极表面直接生成导电性薄膜,其电导率可以达到102S/cm,且稳定性好于聚乙炔。聚吡咯的氧化电位比其单体低约1V左右。聚吡咯也可以用化学掺杂法进行掺杂,掺杂后由于反离子的引入,具有一定离子导电能力。聚吡咯除了作导电材料使用,如作为特种电极等场合外,还用于电显示材料等方面,作为线性共轭聚合物,聚吡咯还具有一定光导电性质。小阴离子掺杂的聚吡咯在空气中会缓慢老化,导致其电导率降低。大的疏水阴离子掺杂的聚吡咯能在空气中保存数年而无显著的变化。

聚吡咯分子简式

折线式

聚吡咯常见问题

  • N-甲基吡咯烷酮的毒性防护

    对皮肤有轻度刺激作用,但未见吸收作用。由于蒸气压低,一次吸入的危险性很小。但慢性作用可致中枢神经系统机能障碍,引起呼吸器官、、血管系统的病变。小鼠吸入本品蒸气2小时,浓度为0.18~0.20mg/L,...

  • 哪些清洗剂要用到N-甲基吡咯烷酮

    漆包线的溶剂之一,一般漆包线有两种溶剂甲酚和N-甲基吡咯烷酮,买给清洗剂厂家还不如卖给电工漆厂家呢

  • N-甲基吡咯烷酮生产厂家有哪些

    N-甲基吡咯烷酮 简称NMPCAS码是:872-50-4该产品属于1.4丁二醇系列下游产品,主要用途是锂电池、动力电池、医药企业,绝缘漆等行业。生产厂家以河南和山东省为主,国内厂家不是很多。河南有...

聚吡咯可由吡咯单体通过化学氧化法或者电化学方法制得。化学聚合是在一定的反应介质中通过采用氧化剂对单体进行氧化或通过金属有机物偶联的方式得到共轭长链分子并同时完成一个掺杂过程。该方法的合成工艺简单,成本较低,适于大量生产。使用化学法制备聚吡咯时的产物一般为固体聚吡咯粉末,即难溶于一般的有机溶剂,机械性能也较差不易进行加工。合成聚吡咯产品是的机理:首先,当体系中有氧化剂存在时,呈电中性的一个聚吡咯单体分子会在氧化剂的作用下被氧化失去一个电子,变成阳离子自由基。然后两个阳离子自由基在体系中碰撞结合成含有两个阳离子自由基的双阳离子二聚吡咯,此时的双阳离子在体系中经过歧化作用生成一个呈电中性的二聚吡咯。电中性的二聚吡咯又会与体系中的阳离子自由基相互结合生成三聚吡咯的阳离子自由基,经过歧化作用而生成三聚体的聚吡咯,周而复始最终生成了长分子链的聚吡咯。电化学聚合是在电场作用下,采用电极电位作为聚合反应所需要的能量,经过一段时间的反应后会在电极表面沉淀一层聚合物从而得到共轭高分子膜。通过控制聚合条件如电解液种类、吡咯单体的浓度、溶剂、聚合电压、电流大小和温度等因素可制备具有各种不同形貌和性能的高聚物膜。进行电化学聚合时一般以铂、金、不锈钢、镍等惰性金属或导电玻璃、石墨和玻炭电极等作为电极使用。在使用电化学方法制备聚吡咯时的聚合机理与用化学氧化法制备时的机理相似,也可以用自由基机理来解释:首先,吡咯单体分子在电场的作用下,会在电极的表面失去电子而成为阳离子自由基,然后自由基会与另一单体相互结合而成为吡咯的二聚体。经过链增长步骤,最终得到聚吡咯大分子链。通常来说,使用化学氧化聚合法或电化学聚合法制备聚吡咯时,得到的产品都是黑色的固体,在使用化学氧化聚合法时制备的聚吡咯的产物一般是黑色粉末,而通过电化学聚合法则会在电极表面得到一层PPy薄膜。2100433B

聚吡咯文献

绝缘环氧模塑料表面导电聚吡咯薄膜的化学聚合与表征 绝缘环氧模塑料表面导电聚吡咯薄膜的化学聚合与表征

格式:pdf

大小:653KB

页数: 4页

评分: 4.4

电磁波干扰越来越多地存在于我们的日常生活中,许多微电子封装材料需要具备屏蔽电磁波的功能.聚吡咯由于具有良好的导电性能和环境稳定性,表现出优异的电磁屏蔽能力.我们利用化学聚合法在绝缘环氧模塑料封装材料表面制备得到了导电聚吡咯薄膜,用X射线光电子能谱、红外光谱、扫描电子显微镜对聚合物薄膜进行了表征.通过SEM分析表明,经对甲基苯磺酸钠掺杂后,制备得到的聚吡咯薄膜均匀连续、致密平整,用四探针测试仪测得掺杂后聚吡咯薄膜的电导率达到了2.3×103 S/m以上.

立即下载
水杨酸钠对电镀锌钢板上电聚合吡咯的作用 水杨酸钠对电镀锌钢板上电聚合吡咯的作用

格式:pdf

大小:653KB

页数: 5页

评分: 4.5

利用循环伏安法等方法分析了水杨酸钠对电镀锌钢板上电聚合吡咯的作用。结果表明,水杨酸钠作为支持电解质,对锌镀层表面起钝化作用,抑制了Zn的溶解,有利于吡咯的电聚合,可在电镀锌钢板表面形成均匀致密的聚吡咯膜。

立即下载

聚乙烯吡咯烷酮(Polyvinylpyrrolidone)简称PVP,是N-乙烯基-2-吡咯烷酮发生聚合生成的高分子化合物。

聚乙烯吡咯烷酮(polyvinyl pyrrolidone)简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中最具特色,且被研究得最深、广泛的精细化学品品种。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其优异独特的性能获得广泛应用。聚乙烯吡咯烷酮[1]

PVP按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应的PVP平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。

PVP是以单体乙烯基吡咯烷酮(NVP)为原料,通过本体聚合、溶液聚合等方法得到。在本体聚合制备过程中,由于存在反应体系粘度大,聚合物不容易扩散,聚合反应热不容易移走导致局部过热等问题,因此得到的产品分子量低,残留单体的含量高,而且多呈黄色,没有太大实用价值。工业上一般都采用溶液聚合法合成PVP。聚乙烯吡咯烷酮PVP生产聚合有二条主要路线,第一是N-2-吡咯烷酮(NVP)在有机溶剂中进行溶液聚合,然后进行蒸汽汽提。第二条路线为NVP单体与水溶性阳离子、阴离子或非离子单体进行水溶液聚合。

将NVP单体直接加热到140℃以上,或者在NVP溶液中加入引发剂加热,或者在NVP的溶液中(溶剂可以是水、乙醇、苯等)加入引发剂通过自由基溶液聚合,或者直接用光照射NVP单体或其溶液都可以得到PVP均聚物,聚合方法不同,得到的聚合物结构和性能都有所不同,其中自由基溶液聚合得到的聚合物组成、结构较均匀。性能也比较稳定,是NVP均聚最常用的方法,调节单体浓度、聚合温度、引发剂用量等反应条件即可以得到不同分子量和不同水溶性的PVP均聚物。

工艺一:将NVP配置成质量分数为50%的溶液,用少量过氧化氢作为催化剂,在偶氮二异丁腈作用下,于50℃下引发聚合,使NVP几乎全部转化成PVP。再向聚合物中加氨水,使残存的偶氮二异丁腈分解,单体聚合转化率近100%,固含量50%。

工艺二:在250 mL四口烧瓶中加入0.4 g分散剂P(NVP-co-VAc)和80 g分散介质乙酸乙酯,70℃恒温水浴搅拌溶解后,加入20 g单体NVP和0.15 g引发剂AIBN,氮气氛围下反应6 h,冷却并过滤,不溶物置于真空干燥箱内真空干燥24h,得白色PVP固体粉末。

PVP的聚合中绝大多数使用AIBN做引发剂,未见有用水溶性偶氮类引发剂进行引发合成PVP的文献,但有人正在做这一方面的工作。由于NVP单体与PVP均是溶于水的,完全可以使用水溶性的偶氮类引发剂引发聚合生成线性PVP高分子,况且AIBN含有对人体有害的基团氰基,而水溶性偶氮类引发剂大多不含氰基,PVP又是大多用于与人体直接接触的产品,所以水溶性偶氮引发剂比AIBN更有优势。

聚乙烯吡咯烷酮制备

PVP是以单体乙烯基吡咯烷酮(NVP)为原料,通过本体聚合、溶液聚合等方法得到。在本体聚合制备过程中,由于存在反应体系粘度大,聚合物不容易扩散,聚合反应热不容易移走导致局部过热等问题,因此得到的产品分子量低,残留单体的含量高,而且多呈黄色,没有太大实用价值。工业上一般都采用溶液聚合法合成PVP。 PVP生产聚合有二条主要路线,第一是N-2-吡咯烷酮(NVP)在有机溶剂中进行溶液聚合,然后进行蒸汽汽提。第二条路线为NVP单体与水溶性阳离子、阴离子或非离子单体进行水溶液聚合。

将NVP单体直接加热到140℃以上,或者在NVP溶液中加入引发剂加热,或者在NVP的溶液中(溶剂可以是水、乙醇、苯等)加入引发剂通过自由基溶液聚合,或者直接用光照射NVP单体或其溶液都可以得到PVP均聚物,聚合方法不同,得到的聚合物结构和性能都有所不同,其中自由基溶液聚合得到的聚合物组成、结构较均匀。性能也比较稳定,是NVP均聚最常用的方法,调节单体浓度、聚合温度、引发剂用量等反应条件即可以得到不同分子量和不同水溶性的PVP均聚物。

工艺一:将NVP配置成质量分数为50%的溶液,用少量过氧化氢作为催化剂,在偶氮二异丁腈作用下,于50℃下引发聚合,使NVP几乎全部转化成PVP。再向聚合物中加氨水,使残存的偶氮二异丁腈分解,单体聚合转化率近100%,固含量50%。

工艺二:在250 mL四口烧瓶中加入0.4 g分散剂P(NVP-co-VAc)和80 g分散介质乙酸乙酯,70℃恒温水浴搅拌溶解后,加入20 g单体NVP和0.15 g引发剂AIBN,氮气氛围下反应6 h,冷却并过滤,不溶物置于真空干燥箱内真空干燥24h,得白色PVP固体粉末。

PVP的聚合中绝大多数使用AIBN做引发剂,未见有用水溶性偶氮类引发剂进行引发合成PVP的文献,但有人正在做这一方面的工作。由于NVP单体与PVP均是溶于水的,完全可以使用水溶性的偶氮类引发剂引发聚合生成线性PVP高分子,况且AIBN含有对人体有害的基团氰基,而水溶性偶氮类引发剂大多不含氰基,PVP又是大多用于与人体直接接触的产品,所以水溶性偶氮引发剂比AIBN更有优势。

聚吡咯相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏