书 名 | 交流同步电机调速系统 | Adjusting speed system of synchronous machine2版 | 作 者 | 李崇坚 |
---|---|---|---|
出版社 | 科学出版社 | 出版时间 | 2013年2月 |
ISBN | 9787030365613 |
序
第二版前言
第一版前言
第1章 绪论
第2章 交流同步电机的数学模型
第3章 电力电子变换器
第4章 交流同步电机的磁场定向控制原理与特性
第5章 交流同步电机的磁场定向控制系统
第6章 交流同步电机的直接转矩控制
第7章 大功率永磁同步电机调速系统
第8章 大功率直线同步电机调速系统
第9章 负载换流同步电机调速系统
第10章 交流变频调速同步电机
第11章 交流同步电机调速系统的工程应用
参考文献
本书阐述了交流同步电机调速的原理,推导了同步电机的数学模型,介绍了电力电子功率变换器的原理,分析了交交变频器及三电平PWM交直交变频器的特性、交流同步电机的磁场定向控制原理及系统组成、同步电机直接转矩控制原理及系统、永磁同步电机和直线同步电机调速控制原理与方法、负载换流交直交变频器调速同步电机的原理与系统,以及变频调速同步电机设计与参数影响,并给出了大功率交流同步电机调速的工程应用实例。
1、变频器调速:平稳、可根据需要调节速度,是未来交流电动机的发展方向;(调频)2、星、三角接法转换,一般在较大电机启动用星形启动,三角形运作,降低启动电流。(调磁极对数)3、还有就是双速、三速电机,增...
主要区别是转速,即:同步转速与异步转速的差异。异步电动机,负载越重,转速越慢;
因为交流电调速系统具有电机成本本,维护费用低等优点。但交流电机调速系统并不能完全取代直流电机调速系统。直流电机的部份优良特流电机是无法替代的。如在我们常用的电动工具中,其作用的串激电机其实就是直流电机...
交流异步电机和同步电机分别是什么 1 、什么是直流电机? 答:输出或输入为直流电能的旋转电机,称为直流电机 2、什么是交流电机 答:输出或输入为交流电能的旋转电机,称为交流电机。 3、什么是步进电机 答:步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到 一个脉冲信号, 它就驱动步进电机按设定的方向转动一个固定的角度 (及步进角)。您可以通 过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率 来控制电机转动的速度和加速度,从而达到调速的目的。步进电机分三种:永磁式( PM),反 应式( VR)和混合式( HB)。永磁式步进一般为两相,转矩和体积较小,步进角一般为 7.5 度或 15度;反应式步进一般为三相, 可实现大转矩输出, 步进角一般为 1.5 度,但噪声和振 动都很大。 在欧美等发达国家 80年代已被淘汰; 混合式步进是指混合
第五篇 同步电机 5.1 同步电机和异步电机在结构上有哪些区别? 5.2 什么叫同步电机?怎样由其极数决定它的转速?试问 75r/min、50Hz 的电机是几 极的? 5.3 为什么现代的大容量同步电机都做成旋转磁极式? 5.4汽轮发电机和水轮发电机的主要结构特点是什么?为什么有这样的特点? 5.5 伞式和悬式水轮发电机的特点和优缺点如何?试比较之。 5.6 为什么水轮发电机要用阻尼绕组,而汽轮发电机却可以不用? 5.7 一台转枢式三相同步发电机,电枢以转速 n 逆时针方向旋转,对称负载运行时, 电枢反应磁动势对电枢的转速和转向如何?对定子的转速又是多少? 5.8 试分析在下列情况下电枢反应的性质。 (1)三相对称电阻负载; (2)纯电容性负载 8.0CX ,发电机同步电抗 0.1tX ; (3)纯电感性负载 7.0LX ; (4)纯电容性负载 2.1CX ,同步电抗 0.1tX 。 5.
第2版前言
第1版前言
绪论
第一章 异步电动机调压调速系统
第一节 异步电动机调压调速原理和方法
第二节 晶闸管三相交流调压电路
第三节 调压调速系统的组成及静特性
第四节 滑差电动机调速系统
第五节 异步电动机调压调速系统应用举例
练习与思考题
第二章 绕线转子异步电动机串级调速系统
第一节 串级调速的原理及基本类型
第二节 低于同步转速的串级调速系统的机械特性
第三节 串级调速系统的效率和功率因数
第四节 串级调速的闭环控制系统
第五节 串级调速系统应用中的几个问题
第六节 单片机控制的串级调速系统实例
练习与思考题
第三章 变频调速及变频器
第一节 异步电动机变频调速的控制方式和机械特性
第二节 变频器的分类与特点
第三节 晶闸管变频器
第四节 脉宽调制型变频器
练习与思考题
第四章 异步电动机变频调速系统
第一节 转速开环的晶闸管变频调速系统结构
第二节 晶闸管变频调速系统中的主要控制环节
第三节 转差频率控制的转速闭环变频调速系统
第四节 删变频调速系统中的功率接口
第五节 PWM变频调速系统
练习与思考题
第五章 变频调速系统的控制算法
第一节 矢量变换控制的基本概念
第二节 异步电动机的数学模型
第三节 坐标变换
第四节 交流电动机的矢量变换变频调速系统
第五节 其他控制算法
练习与思考题
第六章 同步电动机调速系统与交流伺服系统
第一节 同步电动机调速的基本原理
第二节 永磁同步电动机调速系统
第三节 交流伺服系统及应用
第四节 负载换相的同步电动机控制系统
练习与思考题
第七章 变频调速应用
第一节 变频调速技术在工业生产中应用的概况
第二节 现代变频器的运行功能
第三节 典型变频器产品的技术性能
第四节 变频调速的运行特点和应用实例
练习与思考题
参考文献2100433B
第1章 绪论
1.1 交流调速系统的发展和应用
1.2 交流调速系统的基本类型
1.2.1 异步电动机调速系统的基本类型
1.2.2 同步电动机调速系统的基本类型
1.3 现代交流调速的技术基础
第2章 异步电动机转差功率消耗型调速系统
2.1 异步电动机恒频变压调速系统
2.1.1 异步电动机恒频变压调速电路
2.1.2 异步电动机改变电压时的机械特性
2.1.3 闭环控制的恒频变压调速系统及其静特性
2.2 异步电动机恒频变压调速时的转差功率损耗分析
2.3 变压控制在软起动器和轻载减压节能运行中的应用
2.3.1 轻载减压节能运行
2.3.2 软起动器
第3章 异步电动机变压变频调速原理
按稳态模型控制的转差功率不变型调速系统
3.1 异步电动机变压变频调速的基本控制方式
3.1.1 基频以下调速
3.1.2 基频以上调速
3.2 异步电动机电压"para" label-module="para">
3.2.1 异步电动机的稳态等效电路和感应电动势
3.2.2 恒压恒频正弦波供电时异步电动机的机械特性
3.2.3 基频以下电压"para" label-module="para">
3.2.4 基频以上恒压变频控制时的机械特性
3.3 笼型异步电动机恒压频比控制的调速系统
3.3.1 转速开环恒压频比控制调速系统的构成
3.3.2 转速开环恒压频比控制调速系统的控制作用
3.4 转速闭环转差频率控制的变压变频调速系统
3.4.1 转差频率控制的基本概念
3.4.2 基于异步电动机稳态模型的转差频率控制规律
3.4.3 转差频率控制的变压变频调速系统
第4章 静止式变压变频器和PWM控制技术
4.1 静止式变压变频器的主要类型
4.1.1 交直交和交交变压变频器
4.1.2 电压源型和电流源型逆变器
4.1.3 180°导通型和120°导通型逆变器
4.2 六拍交直交变频器输出电压的谐波分析
4.2.1 谐波分析
4.2.2 变频器输出谐波对异步电动机工作的影响
4.3 正弦波脉宽调制(SPWM)控制技术
4.3.1 基本思想
4.3.2 正弦波脉宽调制原理
4.3.3 SPWM波的基波电压
4.3.4 脉宽调制的制约条件
4.3.5 同步调制与异步调制
4.3.6 SPWM波的实现
4.3.7 SPWM变压变频器的输出谐波分析
4.4 消除指定次数谐波的PWM(SHEPWM)控制技术
4.5 电流滞环跟踪PWM(CHBPWM)控制技术
4.6 电压空间矢量PWM(SVPWM)控制技术
4.6.1 电压空间矢量
4.6.2 电压空间矢量与磁链空间矢量的关系
4.6.3 六拍阶梯波逆变器供电时异步电动机的基本电压矢量
4.6.4 六拍阶梯波逆变器供电时异步电动机的旋转磁场
4.6.5 期望电压空间矢量的形成
4.6.6 SVPWM的实现方法
4.6.7 SVPWM控制时的电动机定子磁链
4.6.8 SVPWM控制时逆变器的输出电压
4.7 桥臂器件开关死区对PWM变压变频器工作的影响
4.7.1 死区及其对变压变频器输出波形的影响
4.7.2 死区对变压变频器输出电压的影响
第5章 中压大功率变频技术
5.1 中压大功率变频技术的各种方案
5.2 三电平逆变器
5.2.1 工作原理
5.2.2 中性点箝位型逆变器工作状态的切换
5.2.3 中性点箝位型逆变器的输出电压波形
5.2.4 中性点箝位型逆变器的特点
5.2.5 三电平逆变器的控制策略
5.3 单元串联式多电平PWM变频器
5.3.1 单元串联式多电平变频器的工作原理
5.3.2 变频器整流电路的多重化连接
5.3.3 多电平移相式PWM控制
第6章 异步电动机的动态数学模型和坐标变换
6.1 异步电动机动态数学模型的性质
6.2 三相异步电动机的多变量非线性动态数学模型
6.2.1 电压方程式
6.2.2 磁链方程式
6.2.3 转矩方程式
6.2.4 电气传动系统的运动方程式
6.2.5 三相异步电动机的动态数学模型
6.3 坐标变换和变换矩阵
6.3.1 坐标变换的原则和基本思路
6.3.2 三相两相变换(3/2变换)
6.3.3 两相两相旋转变换(2s/2r变换)
6.3.4 直角坐标极坐标变换(K/P变换)
6.4 三相异步电动机在两相正交坐标系上的动态数学模型
6.4.1 异步电动机在静止两相正交坐标系(αβ坐标系)上的动态数学模型
6.4.2 异步电动机在两相同步旋转坐标系(dq坐标系)上的动态数学模型
6.5 三相异步电动机在两相坐标系上的状态方程式
6.5.1 ωψris状态方程式
6.5.2 ωψsis状态方程式
第7章 异步电动机动态模型控制的高性能调速
7.1 矢量控制系统的发展历史和基本思路
7.2 按转子磁链定向的矢量控制方程式及其解耦控制
7.3 转子磁链模型
7.3.1 计算转子磁链的电流模型
7.3.2 计算转子磁链的电压模型
7.3.3 电压模型与电流模型的选择和切换
7.4 转速、磁链闭环控制的矢量控制系统——直接矢量控制系统
7.4.1 带磁链除法环节和电流内环的直接矢量控制系统
7.4.2 带转矩内环的直接矢量控制系统
7.5 磁链开环转差型矢量控制系统——间接矢量控制系统
7.6 异步电动机按定子磁链砰"_blank" href="/item/直接转矩控制系统/3953271" data-lemmaid="3953271">直接转矩控制系统
7.6.1 直接转矩控制系统的发展历史和基本特点
7.6.2 定子磁链和转矩反馈模型
7.6.3 定子电压矢量开关状态的选择
7.6.4 直接转矩控制系统与矢量控制系统的比较
7.6.5 改善直接转矩控制系统性能的方案
第8章 异步电机转差功率馈送型控制系统
—绕线转子异步电机双馈控制和串级调速
8.1 绕线转子异步电机双馈时的转子回路
8.1.1 异步电机转子回路附加电动势的作用
8.1.2 转子回路的电力变流单元
8.2 异步电机双馈控制的五种工况
8.2.1 次同步转速电动状态
8.2.2 反转倒拉制动状态
8.2.3 超同步转速回馈制动状态
8.2.4 超同步转速电动状态
8.2.5 次同步转速回馈制动状态
8.3 绕线转子异步电动机串级调速系统
8.3.1 电气串级调速系统的组成
8.3.2 串级调速系统的起动、调速与停车
8.3.3 异步电动机串级调速机械特性的特征
8.3.4 串级调速装置的电压和功率
8.3.5 串级调速系统的效率和功率因数
8.3.6 其他类型的串级调速系统
8.3.7 串级调速系统的双闭环控制
8.4 绕线转子异步电机双馈控制技术
8.4.1 双馈控制的工况与应用
8.4.2 双馈工作用的AC/DC双向PWM变流器
第9章 无速度传感器的高性能异步电动机调速
9.1 开环计算角速度——基于电动机数学模型计算转子角速度或角转差
9.1.1 利用转子电动势计算同步角速度后求得转子角速度
9.1.2 利用转矩计算转差角速度后求得转子角速度
9.2 闭环构造角速度——基于闭环控制作用构造角速度信号
9.2.1 比较定子电流转矩分量用PI闭环控制构造角速度
9.2.2 比较电磁转矩用PI闭环控制构造角速度
9.2.3 比较转子磁链的电压、电流模型用PI闭环控制构造角速度
9.2.4 比较定子电压用PI闭环控制构造角速度
9.2.5 比较定子电流用PI闭环控制构造角速度
9.2.6 基于模型参考自适应系统用PI闭环控制构造角速度
9.3 特征信号处理——利用电动机结构上的特征产生角速度信号
9.3.1 检测转子齿谐波磁场的感应电动势产生角速度信号
9.3.2 注入高频信号获取角速度信号
第10章 同步电动机调速系统
10.1 同步电动机的特点和类型
10.2 转速开环恒压频比控制的同步电动机群调速系统
10.3 直流励磁同步电动机调速系统
10.3.1 负载换相交直交电流型变频直流励磁同步电动机调速系统
10.3.2 交交变压变频器供电的大功率低速直流励磁同步电动机调速系统
10.3.3 按气隙磁场定向的同步电动机矢量控制系统
10.3.4 直流励磁同步电动机的多变量动态数学模型
10.3.5 交直交电压源型变频器供电的直流励磁同步电动机调速系统
10.4 永磁同步电动机调速系统
10.4.1 梯形波永磁同步电动机(无刷直流电动机)调速系统
10.4.2 正弦波永磁同步电动机调速系统2100433B
本书系统地介绍现代交流调速系统的基本原理、数学模型、控制系统和应用性能,以理论联系实际、深入浅出作为编写方针。第2版在第1版的基础上,按照技术与应用发展的需要做了必要的扩充与修订,其中特别增加了“中压大容量变频技术”和“无速度传感器的高性能异步电动机调速系统”两章内容。第3版又按实际发展需要做了一定的增删,例如增加了SVPWM控制技术、绕线转子异步电动机双馈控制技术、基于模型参考自适应系统用PI闭环控制构造转速等内容。