基坑微变形控制系统及方法

《基坑微变形控制系统及方法》是上海建工集团股份有限公司于2014年6月6日申请的发明专利,该专利的申请号为2014102508494,公布号为CN104047292A,授权公布日为2014年9月17日,发明人是顾国明,该发明属于基坑施工领域。 
《基坑微变形控制系统及方法》包括液压缸、螺杆、锁紧螺母、防尘罩、顶块、螺母驱动机构以及防偏转装置,所述液压缸包括缸体、活塞、活塞杆以及导向套,锁紧螺母旋套于螺杆的一端上,活塞杆能够驱动螺杆做直线伸缩运动,螺母驱动机构设置于螺杆上,螺母驱动机构通过驱动锁紧螺母绕螺杆转动使得锁紧螺母紧贴于防尘罩上起到机械自锁的作用,防偏转装置设置于缸体的缸底与活塞杆之间,用以避免活塞杆发生转动使锁紧螺母无法在螺母驱动机构作用下达到预期的同步旋转移动效果。 
2016年12月7日,《基坑微变形控制系统及方法》获得第十八届中国专利优秀奖。 
(概述图为《基坑微变形控制系统及方法》摘要附图  )

基坑微变形控制系统及方法基本信息

中文名 基坑微变形控制系统及方法 公布号 CN104047292A
公布日 2014年9月17日 申请号 2014102508494
申请日 2014年6月6日 申请人 上海建工集团股份有限公司
地    址 上海市浦东新区福山路33号 发明人 顾国明
Int.Cl. E02D17/04(2006.01)I、F15B11/08(2006.01)I、F15B13/044(2006.01)I、F15B15/26(2006.01)I等 类    别 发明专利

图1是《基坑微变形控制系统及方法》一实施例的基坑微变形控制系统的应用场合示意图;

图2是该发明一实施例的基坑微变形控制系统的结构示意图;

图3是图2的A-A剖视示意图;

图4是图2的B-B剖视示意图;

图5是该发明一实施例的接坑微变形控制的液压原理图。

图中,100-基坑微变形控制装置、200-钢支撑、300-围护墙、400-地铁线路、1-缸体、1-1-缸底、1-2-缸壁、2-螺杆、3-锁紧螺母、4-防尘罩、5-顶块、6-活塞杆、12-1-导向槽孔、7-驱动部件、8-太阳轮、9-行星轮、10-内齿圈、11-导向套、12-活塞、13-水平导向杆、14-机械安全阀、15-行星齿轮架、16-PLC控制件、17-二位四通电磁阀、18-三位四通电磁换向阀、19-调速阀、20-油箱、21-液压动力泵、22-压力传感器、23-比例溢流阀。

基坑微变形控制系统及方法造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
智能LED灯控制系统 服务智能系统软件安装、调试工作组级服务器 查看价格 查看价格

梵朗

13% 深圳市梵朗照明科技有限公司江门办事处
控制系统 品种:控制系统; 查看价格 查看价格

勇创

13% 佛山市勇创门业科技有限公司
控制系统 控制系统 查看价格 查看价格

13% 重庆汉沙科技有限公司
控制系统 品种:控制系统 查看价格 查看价格

13% 江苏卓奥节能设备安装工程有限公司浙江办事处
控制系统 品种:控制系统 查看价格 查看价格

卓奥

13% 江苏卓奥节能设备安装工程有限公司浙江办事处
控制系统 CA-TP1350 查看价格 查看价格

13% 深圳市车安科技发展有限公司广州分公司
控制系统 JFLNKW-8099/停车场专业电源,防雷击,防潮湿 查看价格 查看价格

13% 成都新捷帆科技有限公司
控制系统 JDC-BX9 查看价格 查看价格

13% 深圳市九鼎智能技术有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
电网系统 查看价格 查看价格

广东2022年1季度信息价
电网系统 查看价格 查看价格

广东2021年4季度信息价
电网系统 查看价格 查看价格

广东2021年3季度信息价
电网系统 查看价格 查看价格

广东2021年2季度信息价
电网系统 查看价格 查看价格

广东2020年3季度信息价
电网系统 查看价格 查看价格

广东2019年4季度信息价
电网系统 查看价格 查看价格

广东2022年2季度信息价
电网系统 查看价格 查看价格

广东2020年2季度信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
场地照明控制系统接口 开放式接口协议,实时收集场地照明控制系统并转发给集成软件平台并转发集成系统软件发送的控制命令给场地照明控制系统.|2套 1 查看价格 北京中意明安科技有限责任公司 广东   2021-03-29
医用门电机控制系统 医用门电机控制系统|113套 3 查看价格 聊城天昊射线防护工程有限公司四川办事处 四川  德阳市 2020-03-07
医用门电机控制系统 医用门电机控制系统|107套 3 查看价格 聊城天昊射线防护工程有限公司四川办事处 四川  德阳市 2020-03-07
会议控制系统 会议控制系统|1套 3 查看价格 深圳金华亿网络工程有限公司 广东  阳江市 2017-12-05
DMX控制系统 DMX控制系统|500套 1 查看价格 广州市雷雄照明器材有限公司 广东  广州市 2021-07-30
会议控制系统 会议控制系统|1套 3 查看价格 华平信息技术股份有限公司 广东  阳江市 2017-12-26
AGV控制系统 AGV控制系统|1套 1 查看价格 珠海创智科技有限公司 全国   2021-02-20
会议控制系统 会议控制系统|1套 3 查看价格 华平信息技术股份有限公司 广东  阳江市 2018-05-16

1.一种基坑微变形控制系统,包括液压缸、螺杆、锁紧螺母、防尘罩以及顶块,所述液压缸包括缸体以及设置于缸体内的活塞、活塞杆以及导向套,所述锁紧螺母旋套于所述螺杆的一端上,所述螺杆的另一端与所述活塞杆固定连接,所述顶块设置于所述螺杆上远离活塞杆的一端端面上,所述防尘罩套设于所述螺杆的外侧且位于所述锁紧螺母和缸体之间,所述防尘罩与所述缸体固定连接,其特征在于,所述基坑微变形控制系统还包括螺母驱动机构以及防偏转装置,所述螺母驱动机构设置于所述螺杆上,所述螺母驱动机构通过驱动所述锁紧螺母绕所述螺杆转动使得所述锁紧螺母能够紧贴于所述防尘罩上以起到机械自锁的作用,所述防偏转装置设置于所述缸体的缸底与所述活塞杆之间,所述防偏转装置能够防止活塞杆在锁紧螺母作用下发生转动。

2.根据权利要求1所述的基坑微变形控制系统,其特征在于,所述螺母驱动机构包括驱动部件以及行星齿轮机构,所述行星齿轮机构包括太阳轮、行星齿轮架、行星轮以及内齿圈,所述太阳轮与所述行星轮外啮合,所述行星轮与所述内齿圈内啮合,所述行星轮通过行星齿轮架均匀布设于所述太阳轮的外侧,所述驱动部件带动所述太阳轮转动,所述太阳轮经过所述行星轮带动所述内齿圈转动,所述内齿圈与所述锁紧螺母固定连接或者一体成型。

3.根据权利要求2所述的基坑微变形控制系统,其特征在于,所述驱动部件是减速机或者液压马达或者气压马达。

4.根据权利要求1所述的基坑微变形控制系统,其特征在于,所述防偏转装置包括一水平导向杆,所述活塞杆上对应设有一供所述水平导向杆直线滑动的导向槽孔,所述水平导向杆与所述导向槽孔相匹配,使得所述水平导向杆只能相对所述导向槽孔做直线运动,所述水平导向杆与所述缸体的缸底固定连接或者一体成型。

5.据权利要求4所述的基坑微变形控制系统,其特征在于,所述导向槽孔的主体结构是一圆孔,该圆孔的一侧具有一个卡槽,所述圆孔与所述卡槽相连通,所述水平导向杆的一端伸入所述卡槽内,所述卡槽的横截面形状与所述水平导向杆的一端的横截面形状相对应。

6.据权利要求5所述的基坑微变形控制系统,其特征在于,所述卡槽的横截面呈矩形或者三角形或者梯形或者圆形或者椭圆形。

7.根据权利要求1所述的基坑微变形控制系统,其特征在于,所述缸体具有一个一端开口的供所述活塞移动的活塞移动腔室,所述导向套固定设置于所述缸体的开口端,所述活塞杆穿过所述导向套设置于所述缸体的活塞移动腔室内,所述活塞固定设置于所述活塞杆上靠近缸体的缸底的一端,所述活塞杆能够相对所述导向套直线滑动,所述活塞将所述活塞移动腔室分隔成缸体无杆腔与缸体有杆腔,所述缸体上分别设有与所述缸体无杆腔和所述缸体有杆腔连通的缸体进、回油口,所述螺母驱动机构中的所述驱动部件为液压马达,所述液压马达上设有马达进、回油口,所述马达进油口与缸体进油口分别经马达进油油路与缸体进油油路接入一总进油油路,所述马达回油口与所述缸体回油口分别经马达回油油路与缸体回油油路接入一总回油油路。

8.根据权利要求7所述的基坑微变形控制系统,其特征在于,还包括PLC控制件以及两个二位四通电磁阀和一个三位四通电磁换向阀,其中,一个二位四通电磁阀设置于所述马达进、回油路上,另一个二位四通电磁阀设置于所述缸体进、回油路上,所述三位四通电磁换向阀设置于所述总进油油路与总回油油路上,所述PLC控制件分别与所述两个二位四通电磁阀以及所述三位四通电磁换向阀电连接。

9.根据权利要求7所述的基坑微变形控制系统,其特征在于,所述马达进油油路以及马达回油油路上分别设置一调速阀,所述缸体进油口和所述缸体回油口上分别设置用于限制回程油压的回程限压阀。

10.一种基坑微变形控制方法,其特征在于,采用如权利要求1-9中任意一项所述的基坑微变形控制系统,将所述基坑微变形控制系统设置于钢支撑与所需微变形控制的基坑围护墙之间,所述顶块顶在所述基坑围护墙的预埋钢板上;当液压缸带动螺杆向前移动时,所述螺母驱动机构带动所述锁紧螺母转动,使得锁紧螺母向后移动,从而使得所述锁紧螺母始终紧贴于所述防尘罩上;当液压缸带动螺杆向后移动时,先通过所述螺母驱动机构带动所述锁紧螺母反向转动,使得锁紧螺母相对所述螺杆向前移动一间隙距离;然后,在螺母驱动机构驱动锁紧螺母向前移动的同时,使得液压缸带动所说螺杆向后移动所需位置。

截至2014年6月,深基坑的开挖支护常使用钢支撑,例如钢筋砼支撑、钢管支撑等。对于钢支撑,一般按照设计要求需要施加预应力,但随着施工时间的推移,钢支撑会产生应力松弛,钢支撑上的预应力会降低,有时甚至降低很多。通常需要在钢管支撑与围护墙之间设置一钢支撑轴力控制装置,通常是一千斤顶,如液压式千斤顶即油缸,由该千斤顶对该钢支撑施加预应力,以防止围护墙在基坑开挖过程中由于钢支撑轴力损失造成基坑变形超出控制范围,特别在一些对基坑变形控制要求极其严格的场合,如运行地铁边的软土深基坑工程的变形控制等。

中国专利文献CN101776106B于2012年10月17日公开了一种基坑钢支撑轴力自适应系统实时补偿液压油缸装置,当油缸进行“伸”工作时,第一活塞杆前进带动螺杆前进,此时,由于锁紧螺母与螺杆螺纹连接,所述锁紧螺母跟随螺杆前进,从而在螺杆与连接过渡套即防尘罩之间产生大的间隙。一旦油缸中出现故障,导致油缸中的压力油突然降低,会导致螺杆快速回退,锁紧螺母和防尘罩之间的距离有多大螺杆回退的距离就有多大,如此会导致钢支撑对围护墙的支撑失效,严重时会影响基坑周边设施例如运行中的地铁的安全。

正是由于在基坑施工过程中,围护墙发生变形时安装了液压油缸装置的钢支撑会产生位移(液压油缸的伸缩产生位移变化),会在锁紧螺母和防尘罩之间产生空隙,为了避免空隙的产生,施工人员需要不定期的检查锁紧螺母和防尘罩之间是否存在空隙,并针对产生了空隙的部位,手动拧紧锁紧螺母,保证锁紧螺母紧挨防尘罩,起到安全锁紧的作用。

然而,通常在一个基坑内需要支护数百根钢支撑,且钢支撑分布在不同深度的工作面,外加施工环境复杂,因此人工检查并拧紧锁紧螺母的工作,费时又费力,需要投入大量的人力、物力。另外,由于上述检查是不定期进行的,因此很可能存在锁紧螺母和防尘罩之间产生了空隙,但是没有及时消除的情况,一旦液压系统产生故障(如高压软管不小心被碰断等)致使系统压力损失,此时由于没有及时消除锁紧螺母与防尘罩之间的间隙,机械锁紧功能就不能发挥作用,使得活塞杆及螺杆被动退回,致使钢支撑轴力急剧降低而失去对基坑围护墙的有效支撑,基坑围护墙变形过大,将对周边的地铁设施产生很大的安全隐患。

因此,如何提供一种可以及时消除由于锁紧螺母与防尘罩之间的间隙,从而免去人工检查所产生的大量人力和物力以及由此产生的安全隐患,发明一种基坑微变形控制系统及方法是该领域技术人员亟待解决的一个技术问题。

基坑微变形控制系统及方法常见问题

  • 电子锁控制系统控制方法是什么?

    电子锁有多种形式,常见的是电子钥匙式电子锁。这种电子锁的钥匙内藏电子电路存储密码,通过光、电和磁性等多种形式和主控电路联系。通过电子技术还可以将钥匙区分“主次”身份,即主钥匙及副钥匙,主钥匙可以打开车...

  • 控制系统

    一般需单独计算。垂直立线这一段一般是采用金属软管敷设的。

  • 智能照明控制系统设计方法谁了解?

    智能照明控制系统的设计一般都是在灯光设计和照明电气设计部分完成之后来进行的。其设计一般可分为:            ...

基坑微变形控制系统及方法专利目的

针对基坑工程(尤其是环境敏感地区如运行地铁边基坑)开挖施工的变形控制难题,《基坑微变形控制系统及方法》提供了一种基坑微变形控制系统及方法,可以及时消除锁紧螺母与防尘罩之间的间隙,起到机械自锁作用,从而免去人工检查所产生的大量人力和物力,同时可以解决因人工检查不及时而存在的安全隐患问题。

基坑微变形控制系统及方法技术方案

一种基坑微变形控制系统,包括液压缸、螺杆、锁紧螺母、防尘罩以及顶块,所述液压缸包括缸体以及设置于缸体内的活塞、活塞杆以及导向套,所述锁紧螺母旋套于所述螺杆的一端上,所述螺杆的另一端与所述活塞杆固定连接,所述顶块设置于所述螺杆上远离活塞杆的一端端面上,所述防尘罩套设于所述螺杆的外侧且位于所述锁紧螺母和缸体之间,所述防尘罩与所述缸体固定连接,所述基坑微变形控制系统还包括螺母驱动机构以及防偏转装置,所述螺母驱动机构设置于所述螺杆上,所述螺母驱动机构通过驱动所述锁紧螺母绕所述螺杆转动使得所述锁紧螺母能够紧贴于所述防尘罩上以起到机械自锁的作用,所述防偏转装置设置于所述缸体的缸底与所述活塞杆之间,所述防偏转装置能够防止活塞杆在锁紧螺母作用下发生转动。

优选的,所述螺母驱动机构包括驱动部件以及行星齿轮机构,所述行星齿轮机构包括太阳轮、行星齿轮架、行星轮以及内齿圈,所述太阳轮与所述行星轮外啮合,所述行星轮与所述内齿圈内啮合,所述行星轮通过行星齿轮架均匀布设于所述太阳轮的外侧,所述驱动部件带动所述太阳轮转动,所述太阳轮经过所述行星轮带动所述内齿圈转动,所述内齿圈与所述锁紧螺母固定连接或者一体成型。

优选的,所述驱动部件是减速机或者液压马达或者气压马达。

优选的,所述防偏转装置包括一水平导向杆,所述活塞杆上对应设有一供所述水平导向杆直线滑动的导向槽孔,所述水平导向杆与所述导向槽孔相匹配,使得所述水平导向杆只能相对所述导向槽孔做直线运动,所述水平导向杆与所述缸体的缸底固定连接或者一体成型。

优选的,所述导向槽孔的主体结构是一圆孔,该圆孔的一侧具有一个卡槽,所述圆孔与所述卡槽相连通,所述水平导向杆的一端伸入所述卡槽内,所述卡槽的横截面形状与所述水平导向杆的一端的横截面形状相对应。

优选的,所述卡槽的横截面呈矩形或者三角形或者梯形或者圆形或者椭圆形。

优选的,所述缸体具有一个一端开口的供所述活塞移动的活塞移动腔室,所述导向套固定设置于所述缸体的开口端,所述活塞杆穿过所述导向套设置于所述缸体的活塞移动腔室内,所述活塞固定设置于所述活塞杆上靠近缸体的缸底的一端,所述活塞杆能够相对所述导向套直线滑动,所述活塞将所述活塞移动腔室分隔成缸体无杆腔与缸体有杆腔,所述缸体上分别设有与所述缸体无杆腔和所述缸体有杆腔连通的缸体进、回油口,所述螺母驱动机构中的所述驱动部件为液压马达,所述液压马达上设有马达进、回油口,所述马达进油口与缸体进油口分别经马达进油油路与缸体进油油路接入一总进油油路,所述马达回油口与所述缸体回油口分别经马达回油油路与缸体回油油路接入一总回油油 路。

优选的,在上述的基坑微变形控制系统中,还包括PLC控制件以及两个二位四通电磁阀和一个三位四通电磁换向阀,其中,一个二位四通电磁阀设置于所述马达进、回油路上,另一个二位四通电磁阀设置于所述缸体进、回油路上,所述三位四通电磁换向阀设置于所述总进油油路与总回油油路上,所述PLC控制件分别与所述两个二位四通电磁阀以及所述三位四通电磁换向阀电连接。

优选的,在上述的基坑微变形控制系统中,所述马达进油油路以及马达回油油路上分别设置一调速阀,所述缸体进油口和所述缸体回油口上分别设置用于限制回程油压的回程限压阀。

《基坑微变形控制系统及方法》还公开了一种基坑微变形控制方法,采用如上所述的基坑微变形控制系统,将所述基坑微变形控制系统设置于钢支撑与所需微变形控制的基坑围护墙之间,所述顶块顶在所述基坑围护墙的预埋钢板上;当液压缸带动螺杆向前移动时,所述螺母驱动机构带动所述锁紧螺母转动,使得锁紧螺母向后移动,从而使得所述锁紧螺母始终紧贴于所述防尘罩上;当液压缸带动螺杆向后移动时,先通过所述螺母驱动机构带动所述锁紧螺母反向转动,使得锁紧螺母相对所述螺杆向前移动一间隙距离;然后,在螺母驱动机构驱动锁紧螺母向前移动的同时,使得液压缸带动所说螺杆向后移动所需位置。

基坑微变形控制系统及方法改善效果

《基坑微变形控制系统及方法》所述基坑微变形控制系统包括液压缸、螺杆、锁紧螺母、防尘罩、顶块、螺母驱动机构以及用于防止活塞杆偏转的防偏转装置,所述液压缸包括缸体、活塞、活塞杆以及导向套,所述螺母驱动机构设置于所述螺杆上,所述螺母驱动机构通过驱动所述锁紧螺母绕所述螺杆转动使得所述锁紧螺母能够紧贴于所述防尘罩上以起到机械自锁的作用,所述防偏转装置设置于所述缸体1的底板与所述活塞杆之间,所述防偏转装置能够防止活塞杆在锁紧螺母作用下发生转动,所述防偏转装置限制活塞杆相对缸体的转动,只允许活塞杆相对缸体作直线运动,同时将来自螺母驱动机构的力传递到缸体上,确保螺母驱动机构的正常运行。如此,所述锁紧螺母能够始终紧贴于所述防尘罩上,从而可以消除由于锁紧螺母与防尘罩之间的间隙,免去人工检查所产生的大量人力和物力,同时可以解决因人工检查不及时而存在的安全隐患问题。

参阅图1至图5,该实施例公开了一种基坑微变形控制系统100,设置于钢支撑200的一端,用于支撑基坑围护墙300,该实施例中,所述围护墙300紧邻运行地铁线路400。

所述基坑微变形控制系统100包括液压缸1、螺杆2、锁紧螺母3、防尘罩4、顶块5、螺母驱动机构以及防偏转装置,所述液压缸包括缸体1以及设置于缸体1内的活塞12、活塞杆6以及导向套11,所述锁紧螺母3旋套于所述螺杆2的一端上,所述螺杆2的另一端与所述活塞杆6固定连接,所述活塞杆6能够驱动所述螺杆2做直线伸缩运动,所述顶块5设置于所述螺杆2上远离活塞杆6的一端端面上,所述防尘罩4套设于所述螺杆2的外侧且位于所述锁紧螺母3和缸体1之间,所述防尘罩4与所述缸体1固定连接,所述螺母驱动机构设置于所述螺杆2上,所述螺母驱动机构通过驱动所述锁紧螺母3绕所述螺杆2转动使得所述锁紧螺母3能够紧贴于所述防尘罩4上以起到机械自锁的作用,所述防偏转装置设置于所述缸体1的底板与所述活塞杆6之间,所述防偏转装置能够防止活塞杆6在锁紧螺母3作用下发生转动而影响锁紧螺母3回退到防尘罩4上,该防偏转装置只允许活塞杆6相对缸体1作直线运动,同时将螺母驱动机构的力传递到底座上,确保螺母驱动机构的正常运行。由于所述锁紧螺母3能够始终紧贴于所述防尘罩4上,从而可以消除由于锁紧螺母3与防尘罩4之间的间隙,免去人工检查所产生的大量人力和物力,同时可以解决因人工检查不及时而存在的安全隐患问题。具体的,当基坑围护墙300出现微变形,液压缸带动螺杆2向前移动,锁紧螺母3和防尘罩4之间因此而出现间隙,螺母驱动机构驱动锁紧螺母3绕螺杆2转动并轴向移动,使得所述锁紧螺母3向后移动从而始终紧贴于所述防尘罩4上,如此即使因液压缸发生故障而不能支撑螺杆2,螺杆也会由于锁紧螺母3紧贴于所述防尘罩4上而使基坑围护墙300得到有效支撑,防尘罩4有足够的强度,可将围护墙300对螺杆2的反力通过锁紧螺母3实时传递给防尘罩4并最终传递给缸体1,确保基坑微变形控制系统的锁紧装置即锁紧螺母3每时每刻发挥作用,从而能确保基坑开挖施工时,钢支撑始终有效保持在设计或施工所需的支撑轴力,确保基坑开挖施工的安全。

参阅图2,并请结合图1,所述螺母驱动机构包括驱动部件7以及行星齿轮机构,所述行星齿轮机构包括太阳轮8、行星齿轮架15、行星轮9以及内齿圈10,所述太阳轮8与所述行星轮9外啮合,所述行星轮9与所述内齿圈10内啮合,所述行星轮9通过行星齿轮架15均匀布设于所述太阳轮8的外侧,所述驱动部件7带动所述太阳轮8转动,所述太阳轮8经过所述行星轮9带动所述内齿圈10转动,所述内齿圈10与所述锁紧螺母3固定连接或者一体成型。当然,具体实施时,还包括太阳轮轴(未图示)和行星轮轴(未图示),所述太阳轮固定套设于所述太阳轮轴上,所述行星轮固定套设于所述行星轴上。所述驱动部件7通过驱动所述太阳轮轴带动所述太阳轮8转动。该实施例中,所述内齿圈10与所述锁紧螺母3一体成型,以加强两者之间的连接强度。

优选的,所述防偏转装置包括一水平导向杆13,所述活塞杆6上对应设有一供所述水平导向杆13直线滑动的导向槽孔6-1,所述水平导向杆13与所述导向槽孔6-1相匹配,使得所述水平导向杆13只能相对所述导向槽孔6-1做直线运动,所述水平导向杆13与所述缸体1的缸底1-1固定连接或者一体成型。

优选的,所述导向槽孔6-1的主体结构是一圆孔,该圆孔的一侧具有一个卡槽,所述圆孔与所述卡槽相连通,所述水平导向杆13的一端伸入所述卡槽内,所述卡槽的横截面形状与所述水平导向杆13的一端的横截面形状相对应。

优选的,所述卡槽的横截面呈矩形或者三角形或者梯形或者圆形或者椭圆形。该实施例中所述卡槽的横截面呈矩形,所述水平导向杆14的横截面也呈矩形,具有加工方便,径向锁紧力强的优点。

该实施例中,所述活塞12将所述活塞移动腔室分隔成缸体无杆腔与缸体有杆腔。所述缸体1包括缸壁1-2和缸底1-1,所述缸底1-1、缸壁1-2、活塞杆6以及活塞12构成所述缸体无杆腔;所述缸壁1-2、导向套11、活塞杆6以及活塞12形成所述缸体有杆腔。所述缸体1上分别设有与所述缸体无杆腔和所述缸体有杆腔连通的缸体进油口和缸体回油口。当螺杆2需要向前移动时即进行“伸”工作时,从缸体无杆腔进油,流入缸体无杆腔,推动活塞杆6前进(纸面向左方向)。此时,活塞杆6在前进的同时压缩缸体有杆腔,缸体有杆腔内的液压油经缸体回油口回油,从而完成缸体1在推进过程中的液压油的循环流动。当螺杆2需要后退时,从缸体有杆腔进油,推动活塞杆6后退(纸面向右方向)。此时,活塞杆6在后退的同时压缩缸体无杆腔,缸体无杆腔内的液压油经缸体无腔油口回油,从而完成缸体1在后退过程中的液压油的循环流动。

优选的,所述螺母驱动机构的所述驱动部件7可以是减速机或者液压马达或者气压马达。该实施例中,所述驱动部件7为液压马达,所述液压马达上设有马达进回油口,所述马达进油口与缸体无杆腔进油口的进油油路由同一总进油油路分路产生,所述马达回油口与所述缸体有杆腔回油口的回油油路并入同一总回油油路。如此,当缸体无杆腔进油口进油时,马达进油口也同步进油,从而便于实现锁紧螺母3跟随螺杆2的移动进行同步反向移动。

参阅图5,并请结合图1-图4,所述基坑微变形控制系统100还包括PLC控制件16以及两个二位四通电磁阀17和一个三位四通电磁换向阀18,其中,一个二位四通电磁阀17设置于所述马达进、回油路上,另一个二位四通电磁阀17设置于所述缸体进、回油路上,所述三位四通电磁换向阀18设置于所述总进油油路与总回油油路上,所述PLC控制件16分别与所述两个二位四通电磁阀17以及所述三位四通电磁换向阀18电连接。通过PLC控制件16对两个二位四通电磁阀17和一个三位四通电磁换向阀18的控制,可以实现液压马达即驱动部件7以及液压缸的进、回油路的通断以及通断的先后时间间隔以及实现液压马达的正反转和活塞(活塞杆)的伸缩动作。当然,所述基坑微变形控制系统100还包括邮箱20、液压动力泵21比例传感器22以及比例溢流阀23等。所述总进油油路与总回油油路分别与所述邮箱20相连。所述总进油油路上靠近邮箱20的一端设有所述液压动力泵21,所述总回油油路靠近邮箱20的一端设有所述比例溢流阀23,所述比例溢流阀23为带反馈的比例溢流阀,根据负载的压力反馈,设定参数,从而保证系统的压力恒定。所述比例溢流阀23、压力传感器22分别与所述PLC控制件16连接并受其控制。

优选的,所述马达进油油路以及马达回油油路上分别设置一调速阀19。通过在安装调试初期,调节该调速阀19,使得锁紧螺母3的移动速度和螺杆2的移动速度相匹配,符合需要的速度即螺杆2前进与后退的速度与锁紧螺母3的进退速度相匹配以达到两者的移动速度相匹配。

所述缸体进油口和所述缸体回油口上分别设置用于限制回程油压的回程限压阀(未图示)。通过设置回程限压阀,可以确保液压缸的安全可靠性。

优选的,请继续参阅图1至图4,在所述的基坑微变形控制系统中,还包括机械安全阀14,所述机械安全阀14设置于所述活塞12上,当活塞12向前移动到极限位置时,所述导向套11能够触发所述机械安全阀14,使所述机械安全阀14导通所述缸体无杆腔和缸体有杆腔以进行卸荷,确保液压缸在到达极限位置时的安全,机械安全阀14导通所述缸体有杆腔和缸体无杆腔,可以限制过大的顶推力使得液压缸免受损坏,导向套1起到安全保护作用。

优选的,所述顶块5与所述螺杆2铰接连接,且所述顶块5能够相对所述螺杆2在30°角度范围内转动。从而可以使得顶块5以面接触的合理方式始终贴合在围护墙300(具体是围护墙300的预埋钢板)上,可以消除由于基坑围护墙不平整造成的点/线接触的传力缺陷,使顶块与围护墙保持面接触,受力更加均匀,以保护整个基坑微变形控制系统。

请继续参阅图1至图4,该实施例还公开了一种基坑微变形控制方法,采用如上所述的基坑微变形控制系统,将所述基坑微变形控制系统100设置于钢支撑200与需微变形控制的基坑(如环境敏感地区如运行地铁边的基坑等)围护墙300之间,所述顶块5顶在所述基坑围护墙300的预埋钢板上。当液压缸中的活塞、活塞杆带动螺杆2向前移动时,所述螺母驱动机构带动所述锁紧螺母3转动,使得锁紧螺母3向后移动,从而使得所述锁紧螺母3始终紧贴于所述防尘罩4上,防尘罩4有足够的强度,可将围护墙300对螺杆2的反力通过锁紧螺母3实时传递给防尘罩4并最终传递给缸体1,确保基坑微变形控制系统的机械锁紧结构每时每刻发挥作用,从而能确保基坑开挖施工时,钢支撑200始终有效保持在设计或施工所需的支撑轴力,确保基坑开挖施工的安全。当液压缸中的活塞、活塞杆带动螺杆2向后移动时,可以先通过所述螺母驱动机构带动所述锁紧螺母3反向转动,使得锁紧螺母3相对所述螺杆2向前移动一间隙距离,例如1-3厘米;然后,在螺母驱动机构驱动锁紧螺母3向前移动的同时,使得液压缸中的活塞、活塞杆带动所说螺杆2向后移动所需位置。

2016年12月7日,《基坑微变形控制系统及方法》获得第十八届中国专利优秀奖。

基坑微变形控制系统及方法文献

深基坑微变形智能安全控制系统研究 深基坑微变形智能安全控制系统研究

格式:pdf

大小:1.8MB

页数: 3页

评分: 4.4

目前广泛应用的深基坑变形液压伺服钢支撑系统基本采用液压和机械锁装置,液压锁存在一定的泄漏影响自锁精度,螺母机械锁施工比较麻烦、效率比较低,本文针对存在的问题,研究设计了3种安全控制系统装置,降低工人劳动强度,提升基坑液压伺服钢支撑安全控制装置的精度、可靠性和自动化水平,提高钢支撑体系的安全性能。

立即下载
控制系统抗干扰分析及解决方法 控制系统抗干扰分析及解决方法

格式:pdf

大小:1.8MB

页数: 1页

评分: 4.8

控制系统抗干扰分析及解决方法 【摘 要】工业控制系统的检测信号一般比较微弱, 干扰信号不能有效解决, 则会严重影响系统的正常工作。尤其是现在单片机 ARM 技术的广泛应用,对 信号的要求也越来越高, 微弱的干扰都会影响整个系统的稳定性。 本文以开发设 计、检测调试过程中的实际经验为例,从原理图设计、 PCB 布线等方面详细讲 述了干扰信号的产生及消除方法,是理论与实际的经验总结。 【关键词】抗干扰;信号;毛刺 1 概述 工业控制系统的任务是根据现场的测量信号, 经分析比较后控制继电器完成 预定操作。但现场测量信号往往比较微弱,比如负荷电流、零序电流、电压等, 由于干扰信号的存在, 当干扰信号强度较大时, 有用的测量信号淹没在杂乱的干 扰信号中,系统无法得到正确的测量结果, 严重影响系统的正常工作, 甚至造成 误判或误动。本文以馈电开关保护器研发过程中发现的电磁干扰及处理方法加以 叙述,供同

立即下载

基坑的变形控制

(一)基坑变形特征

(二)基坑的变形控制

(1)当基坑邻近建(构)筑物时,必须控制基坑的变形以保证邻近建(构)筑物的安全。

(2)控制基坑变形的主要方法有:

(三)坑底稳定控制

(1)保证深基坑坑底稳定的方法有加深围护结构入土深度、坑底土体加固、坑内井点降水等措施。

(2)适时施作底板结构。

基坑的变形控制

(一)基坑变形特征

(二)基坑的变形控制

(1)当基坑邻近建(构)筑物时,必须控制基坑的变形以保证邻近建(构)筑物的安全。

(2)控制基坑变形的主要方法有:

(三)坑底稳定控制

(1)保证深基坑坑底稳定的方法有加深围护结构入土深度、坑底土体加固、坑内井点降水等措施。

(2)适时施作底板结构。

本书是作者多年来从事深基坑工程变形控制理论研究与实践的总结。

主要内容包括:

(1)基坑开挖支护体系内力与变形分析的半空间理论及有限元模型;

(2)任意剖面挡土桩(墙)变形与周围建筑物变形及管线变形的非线性关系的理论解析解;

(3)周围建筑物变形损害和地下管线变形损害的预测;

(4)周围建筑物或管线变形超过允许值的报警标准及控制措施和方法;

(5)不同类型基坑开挖的土压力、结构内力、锚杆锚固力及支护结构与周边地面、临近建(构)物和地下管线的变形实测研究。可以有效解决深基坑支护结构及周围环境变形预测、控制和险情预报的关键和难点问题。

全书共13章:

1.深基坑周围地表沉降及变形分析;

2.深基坑影响区任意点与管道变形计算;

3.深基坑开挖支撑结构的位移算法;

4.基坑挡土墙侧向位移拟合方法;

5.地下水动态作用与基坑抢险;

6.深基坑支护半空间共同作用有限元分析;

7.深基坑开挖半空间可视化软件;

8.软件算例与分析;

9.深基坑工程监测技术;

10.深基坑挡土桩侧土压力实测研究;

11.深基坑支护预应力锚杆锚固力实测分析;

12.深基坑工程信息化监测应用分析;

13.深基坑与周边环境监测实录。

本书可供建筑、市政、地下工程和岩土工程等专业的教学、科研和工程技术人员学习参考。

基坑微变形控制系统及方法相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏