中文名称 | 金属酶 | 外文名称 | metalloenzyme |
---|---|---|---|
简 介 | 含有几种金属离子为辅基的结合酶 | 定 名 | 1988年Bush |
按照金属离子和酶蛋白结合的稳定程度又可分为金属酶和金属激活酶两类。金属酶中,它们牢固地结合在一起,金属离子通常为活性中心。在金属激活酶中,它们松散地结合,但金属离子却是酶活性的激活剂。金属酶种类很多,以含锌、铁、铜的酶最多,如铁金属酶-细胞色素C。也有含钼、锰等其他金属离子的酶。例如细胞色素氧化酶除含有铁离子还含有铜离子。
大部分β-内酰胺酶的活性位点是丝氨酸残基,但也有一小部分活性位点为金属离子的酶类。第一个发现的以金属离子为活性中心的酶是由蜡样芽抱杆菌产生的头孢菌素酶,能被EDTA所抑制,之后世界各地均发现了能产生这类酶的各种细菌。1988年Bush首次将该酶定名为金属β-内酰胺酶(metalloβ-1actamase),简称金属酶。
金属β-内酰胺酶耐受β-内酰胺酶抑制剂且可水解几乎所有β-内酰胺类抗生素(包括亚胺培南)。该酶已在气单胞菌、嗜麦芽窄食单胞菌、洋葱伯克霍尔德氏菌中发现,其中嗜麦芽窄食单胞菌的亚胺培南耐药性由染色体介导,而脆弱拟杆菌、肺炎克雷伯氏菌、铜绿假单胞菌中质粒介导的突变株在日本已有报道。由粘质沙雷氏菌产生的金属β-内酰胺酶IMP-1型可在类似接合子的intl3上移动,已经传播到铜绿假单胞菌、肺炎克雷伯氏菌和产碱杆菌。金属酶可以水解碳青霉烯类和开发的第四代头孢菌素。金属β-内酰胺酶有广泛传播的潜力,对几乎所有的β-内酰胺类抗生素均具有水解活性,是所知的最强的β-内酰胺酶-。
金属波纹补偿器,是的
钛合金属于有色金属。不属于黑色金属。没有惰性金属,只有惰性气体。
高熔点亦称“难熔金属”,稀有金属的一类。通常指钨、钼、铌、钽、钒、锆,也可以包括铼和铪。这类金属的特点为熔点高、咸度大、抗蚀性强,多数能同碳、氮、硅、硼等生成高熔点、高硬度并肯有良好化学稳定性的化合物...
小型镀锌厂由于缺乏环保设施,2000年以后陆续被关闭,但生产中排放的酸、重金属离子给水对土壤环境将带来长期影响.该文调查和采集了南京市浦口区2010年关停的某小型电镀锌厂厂内和厂外土壤各4个样本,分析了土壤中的重金属含量和酶活性.结果表明,镀锌厂内土壤中重金属含量均高于厂外土壤,厂内土壤中重金属Zn、Cr、Cu、Pb的单项污染指数均大于3.0,属于重度污染水平,厂外土壤除了锌和铬为轻度污染,其他重金属污染处于警戒限或清洁水平.镀锌厂外土壤中脲酶、磷酸酶、过氧化氢酶活性均高于厂内土壤,说明土壤重金属污染对土壤微生物数量和养分循环已造成一定影响.
高分子催化剂分类
对化学反应具有催化作用的高分子。主要有天然高分子催化剂和合成高分子催化剂两大类。前者如酶,后者如固定化酶、模拟酶和高分子金属催化剂等。
在生物体内所进行的化学反应,几乎全部是酶催化的。酶是由各种氨基酸联结组成的高分子,有的还含有金属离子(金属酶)。酶的特点是在常温常压下具有很高的活性和选择性。发酵工业早就使用酶作为催化剂。但是,酶是水溶性的,不容易回收再使用,因此在实际应用上受到很大的限制。为了克服这个缺点,到了20世纪50年代,人们开始研究把酶连接在合成高分子上的所谓固定化酶。
利用酶的官能团(-NH2、-COOH、-SH、咪唑基、苯酚基等)与合成高分子的官能团进行反应可以制得。例如,含-C6H4NCS的聚丙烯酰胺与含-NH2的酶作用,可得如下的固定化酶(见结构式a):
固定化酶可用于催化氧化、还原、重排、水解、异构化等反应。例如,固定化氨基酰化酶可使N-酰化-D,L-氨基酸进行选择性水解。所产生的L-氨基酸可利用溶解度的差别,与N-酰化-D-氨基酸分离,此法已工业化。固定化酶属于半合成高分子催化剂。
60年代,关于模拟酶的合成高分子催化剂的研究逐渐活跃起来。酶的催化作用,与其具有光学活性的特殊高级结构和高分子链上的各种官能团所引起的分子内协同效应有关。因此,所谓模拟酶就是用合成方法来模拟酶的结构,以获得高活性、高选择性的催化剂。最简单的模型是在高分子链上引进种种官能团。例如,聚4-乙烯咪唑(b) 能够催化对硝基苯酚乙酸酯的水解,而其催化活性比低分子咪唑 (c)高。如果除了咪唑基以外还含有苯酚基的高分子(d),则它在碱性溶液(pH为9.1)中
的催化活性更高。这些现象被认为是高分子效应所引起的。
模拟金属酶的高分子催化剂叫做高分子金属催化剂。在此以前,均相催化剂用的是有机金属络合物,虽然活性和选择性较高,但是在空气中或受潮后容易失去活性,对金属反应器有腐蚀性,反应后分离和回收催化剂困难,在工业上的应用受到了一定的限制。为了克服这些缺点,60年代末期,出现了把有机金属络合物固定在高分子上的所谓高分子金属催化剂。例如,高分子铑络合物 (e)
和相对应的低分子铑络合物RhCl【P(C6H5)3】3,都能在常温常压下催化烯烃的加氢,并且反应机理也相似。所不同的是,低分子络合物溶液接触到空气就失去活性,而且有腐蚀性;但是高分子铑络合物在空气中很稳定,几乎没有腐蚀性,而且反应完成后,用过滤的方法可回收使用。另一个特点是用高分子催化剂时,加氢速率受烯烃分子的形状和大小的影响较大,即底物(反应物)选择性高;但用低分子络合物时,选择性很低。另外,由于高分子效应,某些高分子金属络合物比低分子 金属络合物催化活性高。例如,芳香烃的加氢是比较困难的,用一般的低分子催化剂,需要在高温高压下才能够进行。但是用二氧化硅为载体的聚γ-二苯基膦丙基硅氧烷-铂络合物(f),在常温常压下对各种芳香烃的加氢具有较高的催化活性,而且稳定性也较高。此外,在氧化、硅氢加成、异构化、醛化、聚合等方面也出现了很多有效的高分子金属催化剂。