中文名 | 进水头损失 | 外文名 | The water head loss |
---|---|---|---|
内 因 | 液体的粘滞性 | 定 义 | 水流在运动过程中的机械能的损失 |
适用领域 | 理工学科、工业技术 | 学 科 | 理工学科 |
单位重量的水或其他液体在流动过程中因克服水流阻力作功而损失的机械能,具有长度因次。水头损失可分为沿程水头损失及局部水头损失两类。某流段的总水头损失hw为各分段的沿程水头损失与沿程各种局部水头损失的总和。
沿程水头损失的理论计算公式——达西一魏斯巴赫( Darcy-Weisbach)公式。
在均匀流中,对任意两断面列能量方程,并通过改变实验条件探讨影响沿程水头损失的因素,从而得到沿程水头损失的计算公式:
式中:
L——计算段长度,m;
R——水力半径,m;
v——断面平均流速,m/s。
上式即为达西 魏斯巴赫公式。
局部水头损失(local head loss) 简称“局部损失”。单位质量的流体在流程中遇到局部阻力,如断面突然变化或急弯的河渠等,水流所消耗的机械能。用
液体在流动的过程中,在流动的方向、壁面的粗糙程度、过流断面的形状和面积均不变的均匀流段上产生的流动阻力称之为沿程阻力,或称为摩擦阻力。沿程阻力的影响造成流体流动过程中能量的损失或水头损失。沿程阻力均匀地分布在整个均匀流段上,与管段的长度成正比,一般用
另一类阻力是发生在流动边界有急变的流域中,能量的损失主要集中在该流域及附近流域,这种集中发生的能量损失或阻力称之为局部阻力或局部损失,由局部阻力造成的水头损失称之为局部水头损失。通常在管道的进出口、变截面管道、管道的连接处等部位,都会发生局部水头损失,一般用
管道长度( m) 1000 管材 PE80 拟定管道外径 dn 200 拟定设计压力等级 sdr 40 拟定壁厚 5 管道内径 d(mm) 190 过流断面 (m 2 ) 0.0283385 k 0.000915 SL310取值 m 1.774 SL310取值 β 4.774 SL310取值 供水规模 (m 3 /d) 4435 拟定流量(m 3 /s) 0.05133102 单位管长水头损失 0.01308776 沿程水头损失 (m) 13.0877597 局部水头损失( m) 2.61755194 取沿程水头损失的 20% 水头损失合计( m) 15.7053117 作用水头( m) 21 设计流速v 1.8113527 v 2 /2g 0.16404993 λ /d 0.07977912 μ c 0.1086135 流量复核( m3/s) 0.06307908 引水规模 (m3/d)
工业管道中,经常在管道中间设有异径管、三通、闸阀、弯道、格栅等部件或其他构筑物。在这些局部阻碍处均匀流遭到破坏,引起流速分布的急剧变化,从而形成形状阻力和摩擦阻力,由此产生局部水头损失。
产生的原因
边界层分离和漩涡区得存在是造成局部水头损失的主要原因。
过水断面突然扩大的水头损失计算
有管径A1到管径A2过水断面突然扩大,其水头损失计算公式如下:
由于局部障碍的形式繁多,水力现象及其复杂,除少数几种情况可以用理论结合实验计算外,其余都仅由实验测定。
工业管道中,经常在管道中间设有异径管、三通、闸阀、弯道、格栅等部件或其他构筑物。在这些局部阻碍处均匀流遭到破坏,引起流速分布的急剧变化,从而形成形状阻力和摩擦阻力,由此产生局部水头损失。
产生的原因
边界层分离和漩涡区得存在是造成局部水头损失的主要原因。
过水断面突然扩大的水头损失计算
有管径A1到管径A2过水断面突然扩大,其水头损失计算公式如下:
由于局部障碍的形式繁多,水力现象及其复杂,除少数几种情况可以用理论结合实验计算外,其余都仅由实验测定。
沿程水头损失(frictional head loss)是指在固体边界平直的水道中,单位重量的液体自一断面流至另一断面所损失的机械能就叫做该两断面之间的水头损失。
在固体边界平直的水道中,单位重量的液体自一断面流至另一断面所损失的机械能就叫做该两断面之间的水头损失,这种水头损失是沿程都有,并且随沿程长度而增加的,所以叫做沿程水头损失,常用hf表示。