中文名 | 解吸法 | 外文名 | desorption method |
---|---|---|---|
学 科 | 煤层气地质学 | 性 质 | 测量煤层气含量的方法 |
释文:此方法是中国煤炭科学研究总院抚顺分院引进美国矿业局直接法并加以改变后提出的,1983年经原煤炭工业部批准作为部颁标准(MT77-84),1994年被批准作为《中华人民共和国煤炭行业标准MT77-94》。此法规定:钻孔煤心样品装入解吸罐后自然解吸两小时;然后将解吸罐放入水温约95~100℃的水浴内真空脱气;继而取出部分样品,在另一解吸罐内粉碎,同样加温,真空脱气。这样获得自然解吸气量、样品粉碎前脱出的气量、样品粉碎后脱出的气量,再加上推算出的损失气量共四个量,四个气量之和即为煤样中所含的总气量;根据样品质量和气体成分计算煤层甲烷含量。 2100433B
虹吸是一种物理现象,比如现在你有两个水盆,一个在桌上,一个在地上,桌上的水盆有水,地上的没水,你想让桌上水盆中的水到地上的水盆中有不去动两个水盆,就可以用虹吸法,用一根管子,注满水,一头放在桌子的水盆...
快速去除甲醛的方法: 一:多通风 选择开门窗通风,是去除甲醛最好最有效的方法,既简单效果有明显。通过让室内空气自然流通更替来带走和稀释室内的有害气体,是简单有效的方法。 二:光触媒 在基材表面形成的纳...
虹吸现象是液态分子间引力与位能差所造成的,即利用水柱压力差,使水上升后再流到低处。由於管口水面承受不同的大气压力,水会由压力大的一边流向压力小的一边,直到两边的大气压力相等,容器内的水面变成相同的高度...
本文介绍了井下钻孔瓦斯解吸法测定煤层瓦斯含量在黄白茨矿的应用过程,测出了9~#、10~#、16~#煤层的瓦斯含量。该方法为高瓦斯矿井高产、高效测定煤层瓦斯含量提供了借鉴。
第 35卷第 6期 2009年 12月 包 钢 科 技 Sc ience& Technology of Bao tou Steel (G roup) Corporation V o.l 35, N o. 6 December, 2009 水力冲吸法在较大沉井施工中的应用 * 律 耀 (泛海能源投资包头有限公司 , 内蒙古 包头 014010) 摘 要: 文章主要结合浙江春南污水处理 厂粗 格栅及 进水 泵房 施工实 例, 详细 介绍了 较大 型沉井 下沉 施工 技术。 由于该构筑物位于富源村道路西 侧 ,周围有造纸厂 ,地下 水位较高 ,施工降水 难度大成 本高 , 同时下 沉的土 层为粘 土层及细砂层 ,因此拟采用水力机械不排水法下沉 ,这种 方法设备 简单、施工 进度快且 操作安 全,作者通过 此次施 工总结了一些好的经验 。 关键词 : 大型沉井 ;技术初探 ;下沉施工 中图分类号
降压和负压解吸只是靠改变系统的压力来实现的。在许多情况下,由于压力条件的限制,解吸往往不可能充分进行,尤其是对溶解度较大的组分更难充分解吸,需要进一步用其它手段提高组分的解吸程度。解吸剂作用下的解吸,则是普遍采用的有效方法。常用的解吸剂是惰性气体、水蒸汽、溶剂蒸汽和贫气。
1、惰性气流或贫气中的解吸
这种解吸是逆流接触过程。在采用惰性气体为解吸剂的解吸塔中,惰性气体自下而上从塔底进入,与由上而下的液体逆流接触。由于溶质组分不断地从液相转入汽相,液相中组分的浓度将会由上而下逐渐降低,而汽相中组分的浓度则由下而上逐渐增大。 可见,塔中汽,液相组分浓度的变化规律恰好与吸收过程相反。
在某些情况下,解吸剂并不是惰性气体,而是含有溶质组分的气体。当然,解吸组分的汽相分压必须低于平衡分压(故称为贫气)。 其它组分可以是溶解度较大的溶质,其汽相分压也可能比平衡分压大,它们在过程中被下降的溶液所吸收。这就是说,在同一个塔小同寸进行着吸收和解吸。在塔的一定范围内,对一些组分是吸收;对另一些组分却是解吸。
2、直接蒸汽解吸
为了使解吸在较高的温度下进行,可以用水蒸汽作为解吸剂。 饱和水蒸汽或过热水蒸汽从解吸塔底部通入,迎着下降的液流上升。它除了起到降低组分在汽相的分压,导致解吸的作用外,由于蒸汽温度高于溶液温度,且通常是高于溶液的沸点,因而溶液将被加热,从而促进了解吸的进行。
比较简单的理想情况是将吸收液预热到沸点再送入解吸塔。这时,溶液沿整个塔高都处于一定的沸点温度下,如果不消耗热量于组分的解吸(认为气态组分的微分溶解热等于零),且没有对环境的热损失,那么,解吸将在等温下进行。实际的情况要复杂一些。解吸过程中必然要消耗一定的热量,当解吸剂是饱和水蒸汽时,将发生蒸汽的部分冷凝以抵偿这些热量消耗,当解吸剂是过热蒸汽时,消耗的热量靠过热蒸汽的显热来抵偿。实际的解吸过程并不是等温过程。
3、间接加热蒸汽解吸
如图1所示,解吸塔下面设有再沸器(间壁式换热器)。
液体从塔顶进入并向下流动,液相浓度逐渐降低,转入汽相的组分量也逐渐减少。液体流入再沸器中受热而沸腾,部分汽化形成的蒸汽自下而上与含被解吸组分的液体相向而遇,进行热量交换和质量交换。
由上述可知,间接加热蒸汽解吸过程的解吸剂是来自被解吸液体本身汽化所产生的蒸汽,而不是从外部引入的。这种解吸过程实质上就是吸收剂和组分混合物的精馏,与精馏塔的提馏段操作相似。 2100433B
解吸剂需具有如下性质:
1、吸附剂对解吸剂的吸附能力和对二甲苯相近或稍微弱一些,只有这样才有利于两者在吸附剂上进行吸附交换。
当吸附剂外液相中对二甲苯浓度大于吸附剂内对二甲苯浓度时,对二甲苯就能将吸附剂内的解吸剂解吸下来;当吸附剂外液相中解吸剂浓度大于吸附剂内解吸剂浓度时,解吸剂就能将吸附剂内的对二甲苯解吸下来。
若解吸剂被吸附的能力很强,那么吸附了解吸剂的吸附剂与新鲜原料接触时,就无法再吸附原料中的对二甲苯,这样吸附分离过程也就无法进行。同样,解吸剂被吸附能力很弱,也就无法解吸被吸附的对二甲苯。
2、解吸剂和被解吸物质及原料中其他物质之间的沸点差要大,便于用精馏方法分离。
3、解吸剂纯度要高,如果带有杂质可能会影响吸附剂的吸附性能,使吸附剂劣化,同时影响产品的纯度。
4、解吸剂必须具有高的热稳定性和化学稳定性。
符合条件的物质有甲苯、对二乙基苯等,但是,若采用甲苯作为解吸剂,由于与吸附分离单元经常联合应用的异构化工艺,在其反应过程中会产生与甲苯沸点相近的环烷烃产物,使后续精馏过程甲苯的回收、提纯发生困难;其次是甲苯沸点较低,在精馏中是塔顶产品,而甲苯作为解吸剂比抽出和抽余产品的数量更大,将大量的物料作为塔顶产品,显然能耗较大。而对二乙基苯是C10组分,沸点比C8芳烃高很多,易于精馏分离,且作为塔底产品又不会受到轻组分污染。因此,目前PX吸附分离单元采用的解吸剂多为纯度大于95%的对二乙基苯(PDEB)。
在汽—液两相系统中,当溶质组分的汽相分压低于其溶液中该组分的汽相平衡分压时,就会发生溶质组分从液相到汽相的传质,这一过程叫做解吸。
解吸和吸收的原理是相同的,都是在推动力作用下的汽、液相际间的物质传递过程,不同的是两者推动力的方向相反,传质方向也相反。正是根据推动力相反这一点,解吸被看作是吸收的逆过程。有利于吸收出条件对于解吸是不利的,反之亦然。吸收的各种计算方法的原理可以相应地运用于解吸计算。
解吸和吸收在生产中的应用是密切相关的。为了使吸收过程所用的吸收剂,特别是一些价格较高的溶剂能够循环利用,就需要通过解吸把被吸收的物质从溶液中分出,从而使吸收剂得以而生。此外,要利用被吸收的气体组分时,也必须解吸。对于把多组分气体混合物分离成几个馏分或几个单一组分的情况,合理地组织吸收—解吸流程就更加重要了。以N—甲基吡咯烷酮为吸收剂的乙炔提浓过程是多组分吸收—解吸过程的典型实例。该过程由预吸收—预解吸,主吸收—主解吸,高级炔解吸,负压解吸等部分组成,实现了从天然气裂解气中回收合成气,获得产品乙炔(浓度99%以上(,并除去残留在吸收剂中的高级炔和水分(即再生吸收剂)等工艺要求。