中文名 | 结晶器 | 外文名 | crystallizer |
---|---|---|---|
类 型 | 连续铸钢设备 | 分 类 | 套管/组合式 |
条 件 | 具有良好的导热 | 学 科 | 冶金工程 |
按拉坯方向上断面内壁的线型分结晶器的型式有弧形和直形两种;按其总体结构,不论弧形或直形均有套管式和组合式两种。
内壁铜管、内外水套组成的冷却水套和足辊是它的主要构件。直形或弧形的铜管外面由冷却水套、法兰和密封元件等组成供水、供油系统。为了保证铸坯有规整的外形尺寸,在结晶器底部安装了2~3组足辊,以利于提高拉速和防止铸坯脱方。
由宽面及窄面4块复合壁板及外框架组成。多用于板坯连铸、大断面方坯连铸及异型坯连铸。组合结晶器的每块复合壁板又由用螺柱联结的内壁铜板(外侧面铣有冷却水沟)和外壁钢制水箱组成。内壁铜板和外壁间构成冷却水缝,以通水冷却。4块复合壁之间用夹紧机构压紧。为了实现结晶器在线调宽以及形成所要求的倒锥度,在结晶器的窄面壁板的上、下部分别装有4组调整装置。当组装好的结晶器及外框架放到振动台架上时,所有进、出水管自行接通。为了更好地保护结晶器的下口、防止过早过快产生大的磨损,紧挨着结晶器下口装有足辊或保护栅板。足辊或保护栅板与结晶器一起振动。结晶器与二冷第一段(直线段或扇形段)通过振动框架直接对中,便于结晶器与二冷第一段的准确定位。二者形成一个整体,可快速吊运。
一种晶浆循环式连续结晶器(图1)。操作时,料液自循环管下部加入,与离开结晶室底部的晶浆混合后,由泵送往加热室。晶浆在加热室内升温(通常为2~6℃),但不发生蒸发。热晶浆进入结晶室后沸腾,使溶液达到过饱和状态,于是部分溶质沉积在悬浮晶粒表面上,使晶体长大。作为产品的晶浆从循环管上部排出。强制循环蒸发结晶器生产能力大,但产品的粒度分布较宽。
即导流筒-挡板蒸发结晶器,也是一种晶浆循环式结晶器(见彩图)。器下部接有淘析柱,器内设有导流筒和筒形挡板,操作时热饱和料液连续加到循环管下部,与循环管内夹带有小晶体的母液混合后泵送至加热器。加热后的溶液在导流筒底部附近流入结晶器,并由缓慢转动的螺旋桨沿导流筒送至液面。溶液在液面蒸发冷却,达过饱和状态,其中部分溶质在悬浮的颗粒表面沉积,使晶体长大。在环形挡板外围还有一个沉降区。在沉降区内大颗粒沉降,而小颗粒则随母液入循环管并受热溶解。晶体于结晶器底部入淘析柱。为使结晶产品的粒度尽量均匀,将沉降区来的部分母液加到淘析柱底部,利用水力分级的作用,使小颗粒随液流返回结晶器,而结晶产品从淘析柱下部卸出。
又称为克里斯塔尔结晶器, 一种母液循环式连续结晶器(图3)。操作的料液加到循环管中,与管内循环母液混合,由泵送至加热室。加热后的溶液在蒸发室中蒸发并达到过饱和,经中心管进入蒸发室下方的晶体流化床(见流态化)。在晶体流化床内,溶液中过饱和的溶质沉积在悬浮颗粒表面,使晶体长大。晶体流化床对颗粒进行水力分级,大颗粒在下,而小颗粒在上,从流化床底部卸出粒度较为均匀的结晶产品。流化床中的细小颗粒随母液流入循环管,重新加热时溶去其中的微小晶体。若以冷却室代替奥斯陆蒸发结晶器的加热室并除去蒸发室等,则构成奥斯陆冷却结晶器。这种设备的主要缺点是溶质易沉积在传热表面上,操作较麻烦,因而应用不广泛。
结晶器一种槽形容器,器壁设有夹套或器内装有蛇管,用以加热或冷却槽内溶液。结晶槽可用作蒸发结晶器或冷却结晶器。为提高晶体生产强度,可在槽内增设搅拌器。结晶槽可用于连续操作或间歇操作。间歇操作得到的晶体较大,但晶体易连成晶簇,夹带母液,影响产品纯度。这种结晶器结构简单,生产强度较低,适用于小批量产品(如化学试剂和生化试剂等)的生产。
采用近似公式计算圆锥半角a/2时,应注意:圆锥半角应在6度以内。用式〔大头减小头]除以长度乘28.7等于度数。结晶器的类型很多,按溶液获得过饱和状态的方法可分蒸发结晶器和冷却结晶器;按流动方式...
没有定额,只能自己补充市场价格的
结晶氯化铝质量指标:项目 指标% 一级三氯化铁 合格三氯化铁 结晶氯化铝含量≥ 95 92 铁含量≤ 0.25 1.10 水不溶物含量≤ ...
(1)监测摩擦力进行漏钢预报。常用的方法是在振动液压缸上安装测力计、在振动装置上安装测定器、在结晶器上安装加速计和测力计来检测摩擦力。因振动装置的运行状况对摩擦力的测量影响较大,使摩擦力的测量精度难以保证。这种方法虽简单,但精确度不太高,而且只能预报黏结漏钢,生产中常出现误报。
(2)依据结晶器的热传递变化进行漏钢预报。最为简单及直接的方法是测量结晶器冷却水的进水温度和出水温度间的温差,但这种方法常产生误导。使用的是测量热传递量来进行漏钢预报。如运用结晶器单位时间内单位面积上的热传递量进行漏钢预报,操作者可根据单位面积上的热传递量采取正确的行动,如减小拉速、增大拉速、停浇等。
(3)铜板热电偶测量漏钢预报。铜板热电偶测量漏钢预报的准确率相对较高新上的漏钢预报系统以热电偶漏钢预报为主。它的工作原理是在结晶器上安装多只热电偶,热电偶的温度值传递到计算机系统,超过规定值则报警,并自动采取相应的措施或操作者采取相应的操作以避免漏钢的发生。此方法具有预报黏结漏钢、裂纹漏钢、夹渣漏钢、铸坯凹陷及直观显示结晶器内铸坯坯壳凝固情况的功能,其信息纳入铸坯质量预报系统。
为保证结晶器有良好导热性、足够的抗磨损性、机械强度和硬度以延长其使用寿命,内壁材质主要使用铜基合金制造,常用的有紫铜、铜银合金(含银量为0.07%~0.1%)、磷脱氧铜及铜铍合金、铬锆铜合金等。使用铜基合金主要目的是提高其再结晶温度,以改善其高温时的硬度和强度、延长内壁的使用寿命。为了进一步提高内壁的耐磨性和光滑程度减少拉坯阻力,有的还在铜壁表面加镀层。通常为镀铬或镀镍、钨、铁及分三层镀镍、镍磷合金及铬。
为防钢水在冷凝过程中与结晶器内壁粘结,减小拉坯时的摩擦阻力,改善铸坯表面质量、延长结晶器的使用寿命,在生产中,还要对结晶器内壁进行润滑。润滑是采用沸点高于结晶器内壁温度(约200℃左右)的液体润滑剂或保护渣,在结晶器振动的过程中,它们不断被带入钢液面下的内壁上,并在钢水或坯壳与结晶器内壁间形成一层油气膜或熔渣膜,以润滑内壁。
结晶器铜管镀硬铬脱脂废液的处理
基于现有设备及工艺条件下,板坯连铸机在生产过程中极其容易出现结晶器钢液面卷渣、翻钢以及铸坯表面出夹渣等严重现象。本文主要构建水模型,分析板坯结晶器液卷渣现象,探究其卷渣原因,基于控制水口结构参数以及工艺参数下,对卷渣影响因素进行系统分析,进而提出改进措施。
多级结晶器由Concast 提出,是为提高铸坯拉速而产生的。多级结晶器是在结晶器出口下方铸坯表面设置4块带有弹簧压紧装置的铜板,以加强对初离结晶器坯壳的支撑和冷却,并通过设置在铸坯角部的喷淋加强对坯角的冷却。多级结晶器铜板靠弹簧支撑紧贴在铸坯表面,确保冷却均匀,拉坯阻力稍大些,但支撑、冷却效果较好,主要应用在小方坯连铸机管式结晶器上。
多级结晶器能有效保护结晶器下方的薄坯壳,减少漏钢危险,保证连铸坯最佳冷却。与足辊结构相比,在对薄弱坯壳的支撑和对初离结晶器铸坯冷却的均匀性方面,都更具有优越性,更有利于坯壳均匀生长 。
在连铸设备中,结晶器是连铸机的关键部件,钢液通过结晶器壁散热冷却,形成一定厚度的坯壳。目前高效连铸结晶器一次冷却普遍采用水缝管式结构,水缝作为结晶器冷却水通道,结晶器冷却水以9-12m/s 的速度自下而上从水缝中流过,使结晶器具有良好的冷却效果。
为实现高拉速,要求结晶器具有足够的冷却强度,主要通过采用高效结晶器铜管和高精度水缝技术实现。高效结晶器铜管内腔几何形状采用连续锥度或多锥度,以适应铸坯的凝固收缩规律,减小坯壳与结晶器铜壁之间的气隙热阻,尤其是减小角部气隙热阻,增加传热效率;水缝采用高精度窄水缝设计,其宽度一般取3.5-4mm,窄水缝能提高冷却水的流速,水缝高精度可改善水流的均匀性,保证结晶器冷却强度。结晶器一次冷却保证铸坯出结晶器时,形成厚度均匀而强度足够的坯壳,以能抵抗钢液静压力和拉坯力,避免漏钢事故 。
1、连铸板坯的表面和内部缺陷与结晶器内钢液的流动状态密切相关。伴随着连铸机拉速的提高,结晶器内液面波动加剧,容易产生卷渣,造成铸坯质量恶化。采用结晶器钢水流动控制技术可以改善结晶器内流场形态,抑制出料速度以平稳液面,促进夹杂物上浮。用于板坯结晶器的电磁制动(EMBr)、电磁流动控制(FC结晶器)和多模式电磁搅拌(M-MEMS)是结晶器钢水流动控制技术的典型代表。
2、电磁制动器通过对结晶器施加一个与铸流方向垂直的静态磁场而对流动的钢液进行制动。钢流由于电磁感应而产生感应电压,因此在钢液中产生感应电流,这些电流由于受到静态磁场的作用而产生一个与钢水运动方向相反的制动力。钢液的流速越快,制动力也越大。电磁制动器具有一个单一的、覆盖整个板坯宽度的静态磁场。电磁制动技术可抑制水口射流速度,减缓沿凝固壳向下流动,促进夹杂物和气泡上浮。
3 、FC结晶器含有两个方向相反的制动磁场,第一个位于弯月面区域,另一个位于结晶器的下部,每一个磁场都覆盖了板坯的整个宽度。FC结晶器的磁场的上电磁场减少了结晶器弯月面紊流,可防止保护渣卷入凝固壳和角部横裂;下电磁场可减少钢液向下流速,有利于夹杂物和气泡上浮。
4、利用M-MEMS多模式电磁搅拌器可根据需要以不同的方式搅动结晶器内的钢水,显著减少板坯铸造缺陷。该技术采用4个线性电磁搅拌器,位于结晶器高度方向的中部、浸入式水口两侧,每侧2个线圈并排设置,可用于使浸入式水口流出的钢水制动(EMIS)或加速(EMLA)。第三种工作模式则用于使位于弯月面的钢水转动(EMRS),此项技术可有效控制热传导梯度和坯壳凝固前沿的均匀性,消除某些钢种存在的气孔、针孔和表面夹渣等铸造缺陷。