结构型陶瓷主要是指发挥其机械、热、化学等性能的一大类新型陶瓷材料,它可以在许多苛刻的工作环境下服役,因而成为许多新兴科学技术得以实现的关键。具有优越的强度、硬度、绝缘性、热传导、耐高温、耐氧化、耐腐蚀、耐磨耗、高温强度等特色,因此,在非常严苛的环境或工程应用条件下,所展现的高稳定性与优异的机械性能,在材料工业上已倍受瞩目。
空间技术领域,制造宇宙飞船需要能承受高温和温度急变、强度高、重量轻且长寿的结构材料和防护材料,在这方面,结构型陶瓷占有绝对优势。从第一艘宇宙飞船即开始使用高温与低温的隔热瓦,碳-石英复合烧蚀材料已成功地应用于发射和回收人造地球卫星。未来空间技术的发展将更加依赖于新型结构材料的应用,在这方面结构型陶瓷尤其是陶瓷基复合材料和碳/碳复合材料远远优于其他材料。
陶瓷如何分类?可分为哪些类? 陶瓷有多种的分类方法,一般人们习惯按以下四个方面进行分类: ①按用途来分,可分为日用陶瓷,艺术(陈列)陶瓷,卫生陶瓷,建筑陶瓷,电器陶瓷,电子陶瓷,化工陶瓷,纺织陶瓷,透...
结构陶瓷 在材料中,有一类叫结构材料主要制利用其强度、硬度韧性等机械性能制成的各种材料。金属作为结构材料,一直被广泛使用。但是,由于金属易受腐蚀,在高温时不耐氧化,不适合在高温时使用。高温结构...
结构陶瓷 在材料中,有一类叫结构材料主要制利用其强度、硬度韧性等机械性能制成的各种材料。金属作为结构材料,一直被广泛使用。但是,由于金属易受腐蚀,在高温时不耐氧化,不适合在高温时使用。高温结构...
高温结构型陶瓷包括高温氧化物和高温非氧化物(或称难熔化合物)两大类。高温结构材料的出现,弥补了金属材料在高温时不耐氧化,易腐蚀的弱点。金属作为结构材料,一直被广泛使用。但是,由于金属易受腐蚀,在高温时不耐氧化,不适合在高温时使用。高温结构型材料的出现,弥补了金属材料的弱点。
本项目针对压缩感知、图像处理、鲁棒主成分分析、半定规划、机器学习、信息处理等领域中数据量巨大与问题的结构特点,研究了各种结构型优化问题的理论、快速算法及其应用。提出、分析并测试了惯性原始对偶算法、惯性交替方向法、惯性邻近点算法、非精确交替方向收缩算法,并着重研究了从不完全卷积信息中恢复图像信号、鲁棒主成分分析与半定规划的Gauge对偶理论与可并行化算法。通过挖掘内在结构,包括变换稀疏、结构型稀疏、低秩等,借助理论分析与数值实验相结合的方法系统研究了各种结构型优化模型的有效性,并设计了根据问题结构特殊定制的高效数值计算方法,我们的程序与实验结果可供工程技术界使用。所提出的惯性算法能够提高计算效率,gauge对偶理论可用于设计单步计算量低的算法,用于超大规模矩阵计算。另外,我们还对压缩感知、L1模优化、图像处理中全变差正则化问题的快速算法进行总结与推广。合作者在多块分裂问题上的交替方向法的反例在理论上了说明了多块问题的复杂性,并驱动多块问题的收敛算法研究。另外,指导学生完成的交替惯性邻近点算法具有更好的收缩性质,并引起一些法国学者的广泛关注。 2100433B
无序物质构型变化是基础科学研究的前沿。压力可以改变物质内部的原子和电子结构,并进而改变物质的电子状态和物理化学性能,同时也能帮助人们深入认识物质结构、性能及其变化规律。压力下无序物质构型变化的研究对新型防御武器材料国防技术发展具有重要意义。本项目执行时间为2014年1月至2017年12月,在项目执行四年内,课题组成员积极认真地采用先进实验技术(原位同步辐射X射线衍射、吸收谱)和先进理论计算与模拟方法(反蒙特卡罗、第一性原理和经典分子动力学),系统地研究无序合金体系原子电子结构随压力的变化规律, 从原子和电子分布的角度揭示了无序合金在压力下的晶化机理,发现了As2Se3无序物质出现非晶-晶体的可逆相变新现象,获得了无序合金材料在高压下大q范围的高质量衍射谱数据,揭示了无序合金材料原子结构,发现了无序物质中2D-3D非晶-非晶相变,从原子和电子结构两方面揭示无序合金中非晶态相变的机理。