中文名 | 结构热应力 | 应用领域 | 热力学分析 |
---|
1. 热应力随约束程度的增大而增大。由于材料的线膨胀系数、弹性模量与泊桑比随温度变化而变化,热应力不仅与温度变化量有关,而且受初始温度的影响。
2. 热应力与零外载相平衡,是由热变形受约束引起的自平衡应力,在温度高处发生压缩,温度低处发生拉伸形变。
3. 热应力具有自限性,屈服流动或高温蠕变可使热应力降低。对于塑性材料,热应力不会导致构件断裂,但交变热应力有可能导致构件发生疲劳失效或塑性变形累积。
在凝固、冷却的过程中因为产品结构、环境等因素造成各个位置散热条件不会完全相同,热胀冷缩而形成的互相之间因为收缩而产生的作用力。
求解热应力,既要确定温度场,又要确定位移、应变和应力场。与时间无关的温度场称定常温度场,它引起定常热应力;随时间变化的温度场叫非定常温度场,它引起非定常热应力。
热应力的求解步骤:
1、由热传导方程和边界条件(求非定常温度场还须初始条件)求出温度分布;
2、再由热弹性力学方程求出位移和应力。 2100433B
(1)结构体构件的热膨胀或收缩受到外界约束 。
(2 )结构体构件之间的温差 。
(3)结构体内某一构件中的温度梯度 。
(4)线膨胀系数不同材料的组合。
(5 )材料内部夹杂。
(6 )材料的各向异性。
减温器管板和钢管束长期工作在频繁变化的温度中,交变压力很大,造成管板焊缝处经常开裂,管束泄漏。采用合理的焊接工艺,如结507焊条、烘干焊条、焊前预热预热温度150 ℃~200 ℃、焊后回火处理600 ...
DZ-RB型热应力补偿器主要由外筒、内筒、密封件、套管短节、接箍组成。DZ-RB型热应力补偿器是用在油井套管受热伸缩时,可剪断销钉,
可用后张法提供预应力
地壳内热活动及其产生的热应力作用是地震孕育发生的重要因素之一.不同特征的地壳结构对热分布及其热应力有特殊的影响.在含有莫霍面局部上隆、中下地壳的深大断裂、中地壳低速高导体和中上地壳断裂的典型孕震地壳结构模型中,深部热扰动作用下产生的热应力作用会明显上移至中上地壳,对上层脆性地壳的破裂—强地震的发生有直接影响.这一结果对理解深部热流体在地震孕育和发生过程中的作用,以及浅层流体前兆的产生机理具有指导意义.
分析了在热应力作用下双层管胀接复合强度的变化规律,研究表明双层管胀接复合强度经热应力循环后,根据材料性能不同,残余接触压力的变化也不同,且存在极限工作温度;并得到了实验验证。
热应力指数实际上是由包含环境和新陈代谢因素的热平衡方程导出的,它是指为保持人体热平衡所需的蒸发散热与可透过服装散发到环境中去的最大蒸发散热量的比值。热应力指数是在假定环境对健康的劳动个体无身体伤害且在8h的工作日内平均每人的单位时间出汗量为1L/h的条件下得出的。由于热应力指数是在假定劳动个体健康且适应日平均水平热暴露的基础上得出的,因此热应力指数不适用于热应力很高环境中的热应力评价,而且不能反映新陈代谢和环境热产生的热应力。利用热应力指数对热应力的评价中,需要测量空气流速、干球温度、湿球温度及平均辐射温度,还要测量或估算新陈代谢产热量。因此,热应力指数的计算较复杂,这限制了它在控制工作环境温湿度中的应用。
1. 热应力随约束程度的增大而增大。由于材料的线膨胀系数、弹性模量与泊桑比随温度变化而变化,热应力不仅与温度变化量有关,而且受初始温度的影响。
2. 热应力与零外载相平衡,是由热变形受约束引起的自平衡应力,在温度高处发生压缩,温度低处发生拉伸形变。
3. 热应力具有自限性,屈服流动或高温蠕变可使热应力降低。对于塑性材料,热应力不会导致构件断裂,但交变热应力有可能导致构件发生疲劳失效或塑性变形累积。
建立热应力指数的目的在于把环境变量综合成一个单一的指数,用于定量表示热环境对人体的作用应力。具有相同指数值的所有环境条件作用于某个人所产生的热过劳均相同。例如A和B是两个不同的环境,A环境空气温度高但相对湿度低,B环境空气温度低但相对湿度高。如果两个环境具有相同的热应力指数值,则对某个人应产生相同的热过劳。热应力指数的意义见表1 。
HSI |
暴露8h的生理和健康情况的描述 |
|
-20 |
轻度冷过劳 |
|
0 |
没有热过劳 |
|
10~30 |
轻度至中度热过劳、对体力工作几乎没有影响,但可能减低技术性工作的效率 |
|
40~60 |
严重的热过劳,除非身体健壮,否则就免不了危及健康。需要适应环境的能力 |
|
70~90 |
非常严重的热过劳。必须经体格检查以挑选工作人员"top" align="left" width="119"> 100 |
适应环境的健康年轻人所能容忍的最大过劳 |
大于100 |
暴露时间受体内温度升高的限制 |
表1 热应力指数的意义2100433B