结构振动力学基本信息

书    名 结构振动力学 作    者 张相庭 等编著
出版社 同济大学出版社 出版时间 2005年8月1日
定    价 25 元 ISBN 10位[7560813488] 13位[9787560813486]

第1章 概述

1.1 振动

1.2 自由度

1.3 结构振动运动方程的建立

1.4 振动的分类

习题

第2章 单自由度体系的振动

2.1 运动方程的建立

2.2 无阻尼体系的自由振动

2.3 有阻尼体系的自由振动

2.4 无阻尼体系的强迫振动

2.5 有阻尼体系的强逝振动

习题

第3章 多自由度体系的振动

3.1 无阻尼自由振动

3.2 在简谐力作用下的稳态强迫振动

3.3 用振型分解计算强迫振动

3.4 拉格朗日运动方程

习题

第4章 无限自由度体系的振动

4.1 单跨梁的横向弯曲自由振动

4.2 考虑轴力、剪力和转动影响时梁的弯曲自由振动

4.3 杆件的剪切、轴向和扭转自由转动

4.4 主振型的正交性

4.5 无限自由度体系的强迫振动

习题

第5章 自振频率和振型的近似计算方法

5.1 能量法

5.2 集中质量法

5.3 等效团集质量法

5.4 矩阵迭代法

习题

第6章 结构动力有限元法

6.1 单元运动方程

6.2 坐标变换和结构整体运动方程

6.3 振型分解法计算强迫振动

第7章 非线性振动

7.1 非线性振动的基本概念

7.2 直接积分法

7.3 摄动法和KBM法

7.4 等线性法

7.5 数值解法——逐步积分法

7.6 威尔逊θ法

7.7 纽马克法

习题

第8章 随机变量和随机过程的统计特征

8.1 随机振动的基本概念

8.2 随机变量的概率统计特征

8.3 多维概率分布和概率密度函数

8.4 正态分布的统计特征

8.5 常用的随机过程

8.6 随机过程的概率统计特征

习题

第9章 结构随机振动响应

9.1 线性结构干扰与响应的关系

9.2 单自由度结构的随机响应

9.3 多自由度和无限自由度结构的随机响应

习题

第10章 响应峰值分布及可靠性分析2100433B

结构振动力学造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
电机振动 HV×014F产品编号:HV×014F;说明:230VAC;规格:亮架:h250HBC系列塑壳断路器附件;额定电流A:l6A;极数:4P; 查看价格 查看价格

海格

13% 上海迈驰电气有限公司
电机振动 HV×021C产品编号:HV×021C;说明:2N0+2NC;规格:亮架:h400HBC系列塑壳断路器附件;额定电流A:25A;极数:4P; 查看价格 查看价格

海格

13% 上海迈驰电气有限公司
电机振动 HV×024C产品编号:HV×024C;说明:1N0+1NC;规格:亮架:h400HBC系列塑壳断路器附件;额定电流A:32A;极数:4P; 查看价格 查看价格

海格

13% 上海迈驰电气有限公司
电机振动 HV×042C产品编号:HV×042C;说明:230VAC;规格:亮架:h400HBC系列塑壳断路器附件;额定电流A:20A;极数:4P; 查看价格 查看价格

海格

13% 上海迈驰电气有限公司
电机振动 HV×005H产品编号:HV×005H;说明:400VAC;规格:亮架:h800HBC系列塑壳断路器附件路器附件;额定电流A:40A;极数:4P; 查看价格 查看价格

海格

13% 上海迈驰电气有限公司
电机振动 HV×021D产品编号:HV×021D;说明:2N0+2NC;规格:亮架:h800HBC系列塑壳断路器附件路器附件;额定电流A:100A;极数:4P; 查看价格 查看价格

海格

13% 上海迈驰电气有限公司
电机振动 HV×014E产品编号:HV×014E;说明:230VAC;规格:亮架:h100HBC系列塑壳断路器附件;额定电流A:32A;极数:4P; 查看价格 查看价格

海格

13% 上海迈驰电气有限公司
电机振动 HV×015E产品编号:HV×015E;说明:400VAC;规格:亮架:h100HBC系列塑壳断路器附件;额定电流A:40A;极数:4P; 查看价格 查看价格

海格

13% 上海迈驰电气有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
振动桩锤 激振力600KN 查看价格 查看价格

台·月 深圳市2020年7月信息价
振动桩锤 激振力600KN 查看价格 查看价格

台·月 深圳市2019年12月信息价
振动桩锤 激振力600KN 查看价格 查看价格

台·月 深圳市2019年11月信息价
振动桩锤 激振力600KN 查看价格 查看价格

台·月 深圳市2019年6月信息价
振动桩锤 激振力600KN 查看价格 查看价格

台·月 深圳市2019年2月信息价
振动桩锤 激振力600KN 查看价格 查看价格

台·月 深圳市2018年8月信息价
振动桩锤 激振力600KN 查看价格 查看价格

台·月 深圳市2018年5月信息价
振动桩锤 激振力600KN 查看价格 查看价格

台·月 深圳市2018年4月信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
动力学 25mm|28.6m² 3 查看价格 广州翔林木业有限公司 全国   2021-06-30
振动 振动碾|5台班 1 查看价格 济宁市鼎诚工矿设备有限公司 天津  天津市 2014-10-10
振动电缆 振动电缆|2500m 2 查看价格 龙洲电子科技有限公司 广东   2019-12-05
机械振动 不含控制仪垂直振动 J-70C|9台 1 查看价格 济南金恒翔机电有限公司 山东  济南市 2015-03-31
力学轨道套装 ,滑轮套件,光电门固定杆,M5X10蝶形栓若干,Ф12X50金属固定杆2个,弹簧圈2个,L型高度调节套装一套,方形螺母若干等,轨道与小车的接触为截面3点接触,减少了面接触带来的滑动摩擦力,可替代气垫导轨,避免气轨噪声和能耗,能够完成基础型教材力学实验及上百个扩展实验.|15套 1 查看价格 重庆市驰诺科技有限公司 四川   2019-06-24
力学实验桌 1、规格:1200×600×780mm; 2、材质:铝塑结构:主框架全铝Z字型结构,承重性强,整体外观简约美观.台面:采用12.7mm优质实芯理化板,防火阻燃、防腐蚀、耐酸碱、防静电、耐磨、抗污|1张 1 查看价格 成都志能实验仪器有限公司 四川   2020-07-21
力学轨道套装 ,滑轮套件,光电门固定杆,M5X10蝶形栓若干,Ф12X50金属固定杆2个,弹簧圈2个,L型高度调节套装一套,方形螺母若干等,轨道与小车的接触为截面3点接触,减少了面接触带来的滑动摩擦力,可替代气垫导轨,避免气轨噪声和能耗,能够完成基础型教材力学实验及上百个扩展实验.|15套 1 查看价格 广州市翔达教学仪器有限公司 四川   2019-06-23
力学轨道套装 ,滑轮套件,光电门固定杆,M5X10蝶形栓若干,Ф12X50金属固定杆2个,弹簧圈2个,L型高度调节套装一套,方形螺母若干等,轨道与小车的接触为截面3点接触,减少了面接触带来的滑动摩擦力,可替代气垫导轨,避免气轨噪声和能耗,能够完成基础型教材力学实验及上百个扩展实验.|1套 1 查看价格 广州市翔达教学仪器有限公司 四川   2019-06-23

本书是作者根据振动力学课程教学要求,结合教学和科研实践,参考多种现有教本归纳编写而成的。

全书共分十章,前七章阐述振动力学基础及确定性振动,包括自由度和单、多、无限自由度体系的振动;后三章阐述随机振动,包括随机振动理论基础,单、多、无限自由度体系的振动和可靠性分析。

本书可作为高等院校振动力学课程教材,也可作为部分专业本科生和研究生的选修教材,还可作为从事土木工程、机械工程等有关工程技术人员的参考书。

结构振动力学常见问题

  • 动力学 振动分析

    因为重力是不变的,弹力是与位移X有关,当这两个力同时取微分后,重力的微分为零,导致公式中就没有重力了。能量对时间的导数是能量随时间的变化,能量对距离的导数是能量随距离的变化。可以用能量法和牛顿二定律。...

  • 飞行器动力学

    飞行动力学(AIRCRAFT DYNAMICS )   是研究飞行器在空中的运动规律及总体性能的科学。所有穿过流体介质或者是真空的运动体,统称为飞行器。主要包括航天器、航空器、弹箭、水下兵器等。研究弹...

  • 水动力学原理是什么原理?

    研究水和其他液体的运动规律及其与边界相互作用的学科。又称液体动力学。液体动力学和气体动力学组成流体动力学。液体动力学的主要研究内容如下:①理想液体运动。可忽略粘性的液体称为理想液体,边界层外的液体可视...

结构振动力学文献

土动力学二振动与波 土动力学二振动与波

格式:ppt

大小:902KB

页数: 未知

评分: 3

土动力学二振动与波——波动过程中,振动的质点并不随振动的传播产生位移,而是仍然在自己的平衡位置附近振动。   连续介质中的波是由介质中的扰动引起的。   由扰动而产生的变形以应力波的形式传遍整个土体。   

立即下载
工程力学结构动力学复习题集 工程力学结构动力学复习题集

格式:pdf

大小:902KB

页数: 12页

评分: 4.5

工程力学结构动力学复习题 一、简答题 1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段? 2、何谓结构的振动自由度?它与机动分析中的自由度有何异同? 3、何谓动力系数?简谐荷载下动力系数与哪些因素有关? 4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么? 5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们? 6、简述振型分解法是如何将耦联的运动方程解耦的. 7、时域法求解与频域法求解振动问题各有何特点? 8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动 力系数是否一样? 答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应 之比值。 简谐荷载下的动力放大系数与频率比、 阻尼比有关。 当惯性力与动荷载作用线重合 时,位移动力系数与内力动力系数相等; 否则不相等。原因是:当把动荷载换成作用

立即下载

确定性振动 施加在结构上的荷载,随时间变化的规律是已知的,而且结构参数和初始条件也是确定的,则由该荷载所引起的振动称为确定性振动,简称结构振动。其基本特征是:外荷载随时间而变化,结构中各点的加速度不可忽略;因此在动力平衡方程中必须考虑惯性力。承受动力荷载的线弹性结构体系的主要物理特征是体系的质量、弹性特性(柔度或刚度)、能量耗散机理或阻尼以及外部扰力或荷载等。一个理想化的单自由度体系的力学模型(图1a),其质量块在某一瞬间的受力图,如图1b所示。其动力平衡方程为

(1)

上式可改写为

p(t) fI fD fS=0 (1′)

式中x为质量块的位移坐标;p(t)为作用外荷载;fS=-Kx称为弹性恢复力;称为惯性力;=称为阻尼力。  在线弹性体系中,恢复力fS与x成正比,如果fS是与x2或x3成正比,则fS便是非线性恢复力,体系的振动便是非线性振动。按粘性机理,阻尼力fD与速度成正比,C为阻尼常数。阻尼机理是一个复杂的问题,按复阻尼理论,式(1)应写成为如下的形式:

(2)

式中у为非弹性阻尼系数;。

若将(1)式中阻尼和外力忽略,就得到(1)式的特解,称自由振动的方程,其解为x=Asin(ωt 呜),式中A为振幅、ω为圆频率、呜为相位角,是振动三要素。若不忽略阻尼和外力,便得到完全解,包括含有阻尼的自由振动及外力引起的强迫振动(又称响应)。由于阻尼的存在,自由振动将逐步消失。当外力为任意周期激励时,可将外力展开为傅里叶级数,而求得强迫振动。当外力为非周期性激振时,通常采用两种方法,一是傅里叶积分变换,另一是把非周期激振看作是一系列作用时间很短的脉冲,将其响应叠加后即得到非周期激振的响应。此法数学上称卷积。以上方法仅适用于线性系统。此外也可采用数值积分法求近似解,它对非线性系统也适用。

结构振动通常分为单自由度振动、有限自由度振动和无限自由度振动。自由度的数目就是整个体系所具有的独立广义坐标的数目。图2a表示单自由度体系。其自由振动方程为

-δ11m1╔1=y1 (3)

图2b表示两个自由度体系。y1和y2表示两个广义坐标。它们是相互独立的。自由振动方程为

(4)

式中δ11、δ12……为柔度影响系数。。求解两个自由度体系的固有频率可采用以下的方法。设Ii=Aisin(ωt 嗘)(其中i=1,2),并代入式(4)可得

(5)

式中A1=A1=0的解不适用于振动的情况。需要A1和A1不同时为零的解,故令系数行列式等于零。即

(6)

式(6)称为频率方程。它的两个正实根ω1和ω1称为主频率,ω值较小的ω1,即第一主频率;较大的ω1,即第二主频率。将这两个主频率回代到式(5),可得到对应ω1的A1和A1称为第一主振型。对应ω1的称为第二主振型。从式(5)只能求得振型的相对比值而不能求出其大小。上述概念可以推广到n个自由度体系的自由振动。 这时频率方程的行列式为n×n阶,有n个ω的正实根。可用幂法、雅可比法、QR法及其他许多方法求解频率方程。主振型具有正交的性质。利用主振型的正交性,可以方便地解决有限自由度体系的强迫振动问题。n个自由度体系振动问题常用矩阵表达法表示:

(7)

式中的等线体字母代表矩阵或列阵,意义均与(1)式中对应的符号相同。其中质量矩阵m可以是堆聚质量矩阵,也可以是一致质量矩阵。  式(7)为n个联立的常微分方程,当一个方程中的未知位移函数vi(t)(i=1,2,…)个数大于1时,则称该方程中具有耦合项。利用主振型的正交性,可以将式(7)变换为每一个方程中只含有一个未知函数的常微分方程组,这个方法称为解耦:

(8)

式中Φ为振型矩阵,y为正则坐标列阵,Φn为第n振型列阵,Φ寣为Φn的转置。通过式(8)的变换,利用主振型的正交性,并假定  即可将方程组(7)解耦为以下n个独立的常微分方程组。

(9)

求解常微分方程组(9)相当于解n个独立的单自由度振动,因而并不困难。一经解得Ij,并回代到(8),就可得到强迫振动的解v。

当所取的n值无限增大时,原来离散的n个集中质量便转化成为无穷多个连续的质量。这时,梁就成为具有连续分布质量的连续体,这和实际情况是一致的。考虑连续体梁的振动称为具有无限自由度体系的振动,此时运动方程由常微分方程转化为偏微分方程。求解自由振动时可采用分离变量法,首先可求得本征方程,这相当于有限自由度振动的频率方程,从而得到本征值(固有频率)。由本征值可求得本征向量,由本征向量可求得本征函数即振型函数。和求解有限自由度振动问题一样,利用振型函数的正交性,可以较方便地解决强迫振动问题。其基本思想是将梁的挠度I用振型函数展开成。若取一项n=1,是一级近似,相当于一个自由度。若取两项n=1,2,相当于两个自由度。这是从另一条途径将无限自由度振动问题简化为有限自由度振动问题。解决结构振动问题除了采用精确的解析法以外,各种近似方法得到广泛的应用,其中以能量法(见能量原理)和有限元法用得最多。在机械和航空工程中,模态综合法已得到广泛的应用,在土木建筑工程中也在应用。

连续梁和刚架的振动  在结构静力学中分析连续梁和刚架时,常用到力法和位移法。在解决连续梁和刚架的自由振动时,同样也可以用上述方法。若采用力法,则有

δ=0 (10)

令上式中与矩阵δ相对应的行列式等于零,即得到频率方程。若采用位移法,则有

KZ=0  (11)

式(10)、(11)及系数 δij、Kij的物理概念均和结构静力学中一样,只是系数δij和Kij需要根据自由振动的动力微分方程求得。在求解连续梁振动时,(10)式可简化为三弯矩方程。值得注意的是,当求解等跨连续梁振动时,由(10)式所构成的频率方程中一般不包含零解X1=X1=…=Xn=0。但当等跨连续梁两端为铰支时,支座弯矩等于零(X1=X1=…=Xn=0)的零解具有实际意义,它相应于支座处为反弯点的振型曲线(图3a),该振型所相应的频率是连续梁的基频,等于单跨简支梁的基频。两跨和三跨等跨的连续梁,其基频和跨度为l的单跨简支梁一样。 在使用与(11)式相对应的频率方程时,同样也会缺少对应于节点变形刚好等于零的振动形式的频率方程(图3b)。和(10)、(11)式所对应的频率方程比较复杂,可用电子计算机求解。连续梁和单跨梁不同,存在着频率分布的密集区。当解出自由振动后,就可采用振型叠加法求解强迫振动。  桁架的振动  对于桁架的自由振动的计算方法有:①解析法。将桁架的杆件考虑为两力杆,忽略弯曲变形,将杆件的质量集中在桁架的节点上,这样就简化成为有限自由度体系。在每一节点上分别列出自由振动方程后,就可求得频率方程,从而求得桁架的固有频率和振型。②能量法。由于求解频率方程工作最较大。在工程上有时只需要前面几个频率,于是可以采用能量法求固有频率。用能量法求得的基频是相当准确的。自由振动问题解决以后,求解强迫振动就没有什么困难。此外,还可采用有限元法求解,用时可计及桁架构件的弯曲变形。

拱的振动  拱与梁的区别在于拱是曲杆。在动力分析中,必须计及轴力的影响。等截面圆拱可以获得精确的解析解。梁自由振动的动力方程是四阶偏微分方程,而拱是六阶的。单跨梁的第一主振型是正对称的,而圆拱的第一主振型却是反对称的且具有一个节点。圆拱的第二主振型是正对称的而没有节点。如果直接用曲杆的单元刚度矩阵,通过有限元法解拱的自由振动和强迫振动将更为有利。

板的振动  一般包括单块板的振动和连续板的振动。单块板的振动有圆板、椭圆板、三角形板、矩形板以及其他形状板的振动。在土木建筑工程中,矩形板使用得比较多。当单块矩形板两对边为铰支时,可以较容易地获得精确的解析解。至于其他支承情况,可以用能量法求解,其精度比较好。也可以用其他方法进行计算。关于连续板的振动,有一个方向连续的单列板振动(如肋形楼盖),和沿两个方向均为连续的连续板的振动(如多层工业厂房的楼板)。如果考虑单列板的肋梁是刚性支座,它就和连续梁相类似。当肋梁刚度不大时,肋梁不能当作刚性支座,必须计及梁和板的共同作用。对于这种情况,已获得解析解。分析结果表明:当肋梁刚度较小时,第一主振型不具有节线,但当肋梁的刚度比较大但还不是无穷大时,弹性支座单列板的基频有可能和刚性支座单列板的基频相等,但以后各阶的频率和振型分布次序两者是不一样的,而且弹性支座单列板的振型分布发生次序颠倒的现象。在这种情况下,所解得的强迫振动响应两者也不一样,其差别随着肋梁刚度的增加而减小。对于双向连续的连续板振动的分析,在理论上并不存在困难,但是计算工作相当繁复。

随机性振动 简称随机振动。20世纪50年代以来,概率论开始更多地被引入工程领域处理随机荷载作用下的各种振动问题,并逐渐形成一门很有实用价值的新兴学科──随机振动。从力学的角度看,它是古典振动理论的新发展,从数学的角度看,它是随机过程理论在振动领域里的应用。随机振动理论早期应用于高速飞行,50年代以后才开始应用于土木、机械等工程领域以解决在随机激励(如地震、海浪、风暴等)作用下的结构振动分析、疲劳强度设计(见疲劳)、结构的动力可靠性(见结构可靠度)、噪声与隔振及随机振动实验等一系列动力学问题。随机振动尚有很多理论问题和实际问题有待解决,仍处在发展阶段中。

在客观世界有许多随时间变化的量x(t),如作用在结构物上的风压力、地震时的地面运动加速度等,如果在一定条件下,对任何给定的时间t,x(t)有一确定的值,则x(t)称为确定函数。如果在一定条件下,对任何给定的时间t,X(t)的值不确定,或是一个随机变量,则x(t)称为随机过程,并用Xt)表示。如同一地基上的地震仪即使遭到相同震级的地震振动(这是固定的条件),也决不会画出相同的时程曲线x(t),即x(t)具有非重复性。可以认为,某一特定的时程曲线是受概率法则支配而出现的。因此,地震时地面运动引起的结构振动是一种随机振动。随机振动本身也是随机过程。其确切定义:随机过程X(t)是指在一定条件下,所有可能发生的xi(t)(i=1,2,…)的集合(图4),其中任意一个xi(t)(集合中的一个元素)称为样本函数。样本函数本身是一个确定函数。  对于一个随机过程,可以从幅域、时域和频域三个侧面进行描述。

幅域描述  主要是描述随机过程的概率特征。一个随机过程X(t)的概率性质,可由它的各阶概率密度函数确定。各阶概率密度函数是指下列诸函数:p(x1,t1),p(x1,t1;x1,t1),p(x1,t1;x1,t1;x3,t3),…式中xi=x(ti)表示x(t)在时刻t=ti时的值(i=1,2,3,…),它们是随机变量。

如用E【X(t)】表示Xt)的期望值或称均值,则随机过程X(t)的期望值为

(12)

时域描述  主要是描述过程在不同时刻取值的相关性,描述过程在任意两个时刻t1、t2取值的相关程度,寻求随机过程X(t)的自相关函数,故也称相关分析。随机过程X(t)的自相关函数被定义为

(13)

当t1=t2=t,RXX(t,t)=E【X2(t)】称均方值。

频域描述  主要是描述随机过程的频率结构,分析过程由一些具有什么样的频率的简谐分量所构成,寻求该过程的功率谱密度函数,故也称功率谱分析,简称谱分析。功率谱密度函数和自相关函数有其内在联系,在数学上是通过傅里叶变换来联系的。

随机过程可分为两大类:一类是平稳随机过程,另一类是非平稳随机过程。

平稳随机过程按其严格定义是指其整个概率性质,即它的各阶概率密度函数,与时间参数的原点选择无关。

如果随机过程X(t)仅满足下列二个条件

(14)

式中τ=t2-t1(图4),则称广义(或弱)平稳随机过程。一般在工程技术问题中所谓平稳过程是指弱平稳过程。

如果平稳随机过程的期望值式(12)和自相关函数式(14)可以由它的任意一个样本函数的相应的时间平均值代替,则这个平稳过程称为各态历经过程。各态历经过程的物理意义是,平稳过程有足够长的样本记录,包含了关于这个随机过程的全部统计信息。各态历经过程一定是平稳过程但其逆不真。

在随机振动分析中,期望值和自相关函数是描述一个随机过程的统计特性的两个非常重要的量。虽然,它们不能完全刻划一个随机过程,但它们仍包含了一个随机过程的最重要的信息。

和确定性振动问题一样,随机振动问题也是通过求解随机微分方程解决的。

30年来,随机微分方程的理论和应用有了迅速的发展,内容十分丰富。根据问题的物理起源和数学特点,有三大类随机微分方程。最简单的一类只有初始条件是随机的,如在空间弹道问题分析中会出现这一类方程。第二类是随机元素只出现在方程的非齐次项或输入项。第三类是指在方程的左边具有随机系数的微分方程。这类方程的研究才开始的,其应用包括非均匀介质中波的传播和物理、工程、生物、医学中不完全确定的系统的动力学。由实际问题提出的方程,可能同时并有上述三类或其中两类随机因素。

随机振动所研究的各种振动现象都是随机的,其特点是,要对未来某一时刻的振动状态作出确定的预言是不可能的。但如果有了随机荷载(一般称随机激励或随机输入)的统计特性,便可用概率论和振动理论的方法算出随机响应的重要统计特性。

本书 是一本跨学科的具有理论和工程实用价值的专业教科书。作者从声学、结构动力学、流体动力学诸学科的原理出发,系统地对介质中结构振动与声辐射一类的理论和工程问题进行了原理分析与范例的解析计算。包括典型结构的自由振动及其产生的声场波动的特性分析;可压缩介质中不同形式结构激振动的响应分布和声场分布计算方法;随机信号激励下结构的随机振动与噪声场的处理、分析和估计方法;运动介质中流体动力振荡、结构振动和声场的相互耦合作用的分析、计算与估计。

《结构振动理论及其应用(精)》内容分为振动基础理论和工程应用两部分。基础理论包括单自由度系统、多自由度系统和连续系统的振动,分析方法包括精确解、近似解法和有限元法,还对非线性振动系统的求解作了简单介绍;工程应用部分包括回转体振动、工程结构抗震和模态分析技术,最后综合和应用各部分内容、结合工程实例讲述了分析、处理和解决工程结构振动问题的具体方法和步骤。 《结构振动理论及其应用(精)》内容简明扼要,叙述由浅入深,并附有大量的练习题,可作为土建、水利、机械与工程力学等专业博士研究生的《高等结构力学》和硕士研究生的《振动力学》教材和高年级本科生的选修课教材,也可供与工程振动及其结构动力计算有关的工程技术人员参考。

2100433B

结构振动力学相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏