中文名 | 激光诱导等离子体点火机理研究 | 依托单位 | 哈尔滨工业大学 |
---|---|---|---|
项目类别 | 面上项目 | 项目负责人 | 于欣 |
激光等离子体点火技术具有点火位置和时序精确可控、电磁兼容性好、工况适应性好等优点,在内燃机、天然气发动机、燃气轮机等动力系统上具有广泛的应用前景。项目针对激光等离子体点火参数和机理不明确的研究现状,开展了激光等离子体点火机理研究,获得了如下创新性研究成果。 1)建立了甲烷/氧气混合燃气激光等离子体点火化学反应动力学模型,研究了热效应和燃烧化学反应效应在点火过程中的作用,明确了影响成功点火的关键因素是初始火核中激光等离子体产生早期形成的活性基团的浓度,提出了“热效应-燃烧化学反应”点火新机理,完善了现有的“间接点火”模型。 2)系统获得了甲烷/氧气混合燃气激光诱导等离子体的电子温度、电子密度、时空演化、活性粒子分布、振转温度等特性,为分析激光等离子体点火机理奠定了基础。 3)系统开展了甲烷/氧气预混和扩散燃气系统激光等离子体点火实验研究,建立了最小点火能量、点火延时等参数的研究方法,获得了相关参数的边界条件,为激光等离子体点火的应用奠定了基础。 4)提出了激光烧蚀等离子体点火技术,使成功点火的激光脉冲能量降低一个数量级,有利于激光等离子体点火系统的小型化,促进了激光等离子体点火技术的工程应用。 5)在国内最先开展了液氧/甲烷等低温燃料的激光等离子体点火研究,突破了低温推进剂燃料可靠重复点火的技术瓶颈,在姿轨控发动机燃烧模拟器上成功实现了液氧/甲烷的激光等离子体点火,填补了国内空白。 6)克服了超燃冲压发动机燃烧室中湍流耦合、激波干扰等恶劣条件,在国际上首次实现了Ma2.52超声速气流条件下航空煤油的直接激光点火和稳定燃烧,为超燃冲压发动机的可靠重复点火奠定了基础。 本项目的研究成果对于加深激光等离子体点火机理的研究、促进激光等离子体点火的工程应用具有重要的理论意义和应用价值,为火箭发动机、超燃冲压发动机等先进动力系统的可靠重复点火提供了重要的技术支撑。 2100433B
激光诱导等离子体点火(Laser-induced Plasma Ignition, LPI)技术是一种新型的点火方式,有望解决姿轨控火箭发动机电火花点火器高压工作、电磁兼容性差、寿命短、电极能量损失等问题。目前,关于LPI的研究工作主要集中于最小点火能量、点火成功率等宏观参量的研究,点火机理以热源点火模型为主。本项目通过同时引入热点火和化学动力学点火过程,建立含有热源和活性粒子源的点火动力学模型。采用理论和实验相结合的研究方法,开展甲烷/氧气混合燃气激光诱导等离子体点火机理的研究,获得激光诱导等离子体的物理化学特性,以及活性粒子对点火过程的影响规律;完善LPI机理和掌握影响点火过程的关键因素,推进对LPI点火过程的认识,为实际应用提供理论依据和指导。
等离子体聚合物在结构上与普通的聚合物显著不同,它能形成含有活性基团的高度交联的网络结构,从而具有良好的均匀性及对基质的附着性[1,2].有关采用等离子体聚合膜的TSM传感器的报道不多[3,4],本室已...
等离子体又叫做“电浆”,是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质 在人工生成等离子体的方法中,气体放电法比加热的办法更加简便高效,如荧光灯、霓虹灯、电弧焊、电晕放电...
低温等离子体:适合的应用材料的表面清洗活化焊接,油漆,打印,密封,起泡,涂覆及硅化前表面活化处理。气体裂解和高效灭菌加速化学反应产品特点:突破低气压限制,可在大气压下引发等离子体;可对材料连续在线处理...
维普资讯 http://www.cqvip.com
探针光系统作为激光等离子体诊断的探针光源,它通过倍频和受激喇曼散射,将波长为1054nm、脉宽约为1ns激光转换成波长为308nm、脉宽小于60ps、能量大于1mJ的紫外光。通过预研研究和工程化改造,结果表明:探针光系统输出能量大于1mJ、脉宽小于30ps、均匀性较好、运行成功率大于90%,达到了研制标的,可满足激光等离子体诊断的要求。
批准号 |
50806064 |
项目名称 |
时均流诱导热声振荡机理研究 |
项目类别 |
青年科学基金项目 |
申请代码 |
E0601 |
项目负责人 |
孙大明 |
负责人职称 |
副教授 |
依托单位 |
浙江大学 |
研究期限 |
2009-01-01 至 2011-12-31 |
支持经费 |
21(万元) |
本书是关于激光诱导击穿光谱的基础论著,涵盖了激光诱导击穿光谱的基础知识及各种应用。本书内容丰富,从介绍激光诱导击穿光谱的基本原理与仪器结构开始,结合激光等离子体性质及诊断研究,新方法新技术的拓展,各种数据处理模型、相关仪器研发进展及诸多实际应用案例,全面展示了传统分析方法、自由定标方法、化学计量学方法等对激光诱导击穿光谱信息解释的有关技术和知识。全书共8章,内容涉及基本原理、仪器研发、技术进展及该技术在地质、冶金、石油、材料、环境、考古等社会热点中的应用,并探讨了该技术在深空、深海、深地等极端环境领域中的应用前景。
时均流诱导热声振荡是一种新型的能量转换方法,基于其原理可建成完全没有运动部件的、以风能驱动的热声制冷机。本项目拟从理论、数值计算和实验三方面对其机理进行研究:建立时均流剪切边界层非稳定性问题的多维度、可压缩流、非稳态物理模型,确定声场工作频率和强度与漩涡形成周期、数量和运动速度的定量关系。在此基础上引入非线性热声学理论,首次建立时均流诱导热声振荡的完整物理模型。基于DES算法,利用CFD方法对物理模型数值求解,获得压力场、速度场、温度场和密度场的数值解,实现完整物理场分析;研制一台时均流驱动的高效热声制冷机,在热声板叠上产生不小于150K的可用温差,对时均、交变流场中的压力(波动)、速度(波动)、温度(分布)进行精确测量,通过综合分析发现其中蕴含的规律。最后,通过理论和实验相结合,探明时均流、诱导声场、热声效应之间的耦合作用机理,为实现以自然风等时均流驱动的热声制冷机奠定理论基础。