测试范围:
1)使用氩离子激光器,50-9400cm-1 ;
2)使用氦氖激光器,100-5800cm-1 ;
3)使用二极管激光器,100-3200cm-1 ;
最小测试面积:1平方微米;
分辨率:1-2cm-1(随选用的光栅不同而不同)。
红外光谱法的检测直接用红外光检测处于红外区的分子的振动和转动能量:用一束波长连续的红外光透过样 品,检测样品对红外光的吸收情况;而拉曼光谱法的检测是用可见激光(也有用紫外激光或近红外激光进行检测)来检测处于红外区的分子的振动和转动能量,它是 一种间接的检测方法:把红外区的信息变到可见光区,并通过差频(即拉曼位移)的方法来检测。由于可见光区是电子跃迁的能量区,当用可见激光激发样品时,电 子跃迁所产生的光致发光信号会对拉曼信号产生干扰,严重时,拉曼信号会被完全淹没。光致发光信号的特点是谱带较宽,最高强度处的波长(或频率)一定。根据 这个特点,拉曼光谱仪一般都配备多种激光器,当一种激光激发样品时产生很强的光致发光干扰信号时,就改用另一种激光,目的是避开光致发光的干扰。
与红外光谱一样,拉曼光谱也是用来检测物质分子的振动和转动能级,所以这两种光谱俗称姊妹谱。但两者的理论基础和检测方法存在明显的不同。我们说 物质分子总在不停地振动,这种振动是由各种简正振动叠加而成的。当简正振动能产生偶极矩的变化时,它能吸收相应的红外光,即这种简正振动具有红外活性;具 有拉曼活性的简正振动,在振动时能产生极化度的变化,它能与入射光子产生能量交换,使散射光子的能量与入射光子的能量产生差别,这种能量的差别称为拉曼位 移(Raman Shift),它与分子振动的能级有关,拉曼位移的能量水平也处于红外光谱区。
1. 最小可检漏率:5×10-12Pa·m3/s2. 漏率显示范围:1×10-3—1×10-12Pa·m3/s3. 启动时间:≤5min4. 响应时间:≤1s5. 检漏口的最高压力:1500Pa6. ...
建筑设计主要的技术指标有--建筑面积、建筑工程等级、设计使用年限、建筑层数、建筑高度、耐火等级、人防工程防护等级、屋面防水等级、地下室防水等级、抗震设防烈度等技术指标是设计说明中一部分,除了在设计说明...
消耗电流:即咪头的工作电流。主要是FET在VSG=0时的电流,根据FET的分档,可以做成不同工作电流的传声器。但是对于工作电压低、负载电阻大的情况下,对于工作电流就有严格的要求,由电原理图可知VS=V...
激光拉曼光谱法
拼音:jiguanglamanguangpufa
英文名称:laser Raman spectrometry
说明:已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。
该仪器可对固态、液态、气态的有机或无机样品进行非破坏性分析,如用于岩石矿物组成、矿物固液气相包裹体、宝玉石、高聚物、无机非金属材料等的鉴定。
a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;
b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。
c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。2100433B
第十章 主要技术指标分析 一、 名词解释 1、 指数平滑异 同平均线 (MACD) 2 、 相对强弱指数 (RSl) 3、 随机指标 KDJ 4、成交量净额法 OBV 二、单项选择题 1、下面指标中,根 据其计算方法,理论上所给出买、卖信号最可靠的是 ( ) A、MA B、MACD C、WR% D、KDJ 2、()是由股票的上 涨家数和下降家数的比值,推断股票市场多空双方力 量的 对比,进而判断出股票市场的实际情况。 A、ADL B、ADR C、 OBOS D、WMS% 3 、( )主要是从股票投资者买卖趋向的 心理方面,对多空双方的力量对 比进行探索。 A、PSY B、 BIAS C、RSI D、WMS% 4 、当 RSI 随股价回跌而从高价位 滑落,接近先前回跌所形成的密集区域 时,该密集区具有 支撑股价的作用而使 RSI 具备弹升的条件,是( )时机。 A.卖出 B.买进 C.都可
. Word 文档 生石灰的技术指标 项 目 钙质石灰 镁质石灰 一等 二等 三等 一等 二等 三等 有效钙加氧化镁含量不小于( %) 85 80 70 80 75 65 未消化残渣含量 (5mm 圆孔筛余)不大于(%) 7 11 17 16 14 20 消石灰粉的技术指标 项 目 钙质石灰 镁质石灰 一等 二等 三等 一等 二等 三等 有效钙加氧化镁含量不小于( %) 65 60 55 60 55 50 含水率不大于( %) 4 4 4 4 4 4 细 度 0.71mm 方孔筛余不大于( %) 0 1 1 0 1 1 0.125mm 方孔累计筛余不大于( %) 13 20 - 13 20 - 建筑石膏质量标准 技 术 指 标 项 目 一 等 二 等 三 等 凝结时间 (min) 初凝不早于 5 4 3 终凝不早于 7 6 6 终凝不迟于 30 30 30 细度 (筛余≯
除常规的拉曼光谱外,还有一些较为特殊的拉曼技术。它们是共振拉曼,表面增强拉曼光谱, 拉曼旋光,相关-反斯托克拉曼光谱,拉曼增益或减失光谱以及超拉曼光谱等。其中,在药物分析应用相对较多的是共振拉曼和表面增强拉曼光谱法。
共振拉曼光谱法
当激光频率接近或等于分子的电子跃迁频率时,可引起强列的吸收或共振,导致分子的某些拉曼谱带强度急剧增强数百万倍,这就是共振拉曼效应。
表面增强拉曼光谱(SERS)
SERS现象主要由金属表面基质受激而使局部电磁场增强所引起。效应的强弱取决于与光波长相对应的表面粗糙度大小,以及和波长相关的复杂的金属电介质作用的程度。
拉曼光谱的优点在于它的快速,准确,测量时通常不破坏样品(固体,半固体,液体或气体),样品制备简单甚至不需样品制备。谱带信号通常处在可见或近红外光范围,可以有效地和光纤联用。这也意味着谱带信号可以从包封在任何对激光透明的介质,如玻璃,塑料内,或将样品溶于水中获得。现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便(可以使用单变量和多变量方法以及校准。
拉曼光谱可提供任何分子中官能基团的结构信息。因此可用来鉴别试验和结构解析。多晶现象可以参照红外的处理。
拉曼谱带的强度与待测物浓度的关系遵守比尔定律: I V = KLCI 0 其中I V是给定波长处的峰强,K代表仪器和样品的参数,L是光路长度,C是样品中特定组分的摩尔浓度,I 0是激光强度。实际工作中,光路长度被更准确的描述为样品体积,这是一种描述激光聚焦和采集光学的仪器变量。上述等式是拉曼定量应用的基础。
最主要的干扰因素是荧光、样品的热效应和基质或样品自身的吸收。在拉曼光谱中,荧光干扰表现为一个典型的倾斜宽背景。因此,荧光对定量的影响主要为基线的偏离和信噪比下降,荧光的波长和强度取决于荧光物质的种类和浓度。与拉曼散射相比,荧光通常是一种量子效率更高的过程,甚至很少量不纯物质的荧光也可以导致显著的拉曼信号降低。使用更长的波长例如785nm或1064nm的激发光可使荧光显著减弱。然而,拉曼信号的强度与λ-4成比例,λ是激发波长。通过平衡荧光干扰、信号强度和检测器响应可获得最佳信噪比。 测量前将样品用激光照射一定时间,固态物质的荧光也可得以减弱。这个过程被称为光致漂白,是通过降解高吸收物质来实现的。光致漂白作用在液体中并不明显,可能是由于液体样品流动性,或荧光物质不是痕量。
样品加热会造成一系列的问题,例如物理状态的改变(熔化),晶型的转变或样品的烧灼。这是有色的、具强吸收或低热传导的小颗粒物质常出现的问题。样品加热的影响通常是可观察的,表现在一定时间内拉曼光谱或样品的表观变化。除了减少激光通量,有许多种方法可用来降低热效应,例如在测量过程中移动样品或激光,或者通过热接触或液体浸入来改善样品的热传导。 基质或样品本身也可吸收拉曼信号。在长波傅里叶变换拉曼系统中,拉曼信号可以与近红外的泛频吸收重叠。这种影响与系统的光学以及样品的形态有关。装填和颗粒大小的差异而引起的固体散射的可变性与这种效应有关。然而,由于在拉曼光谱中样品的有限穿透深度和相对狭窄的波长范围,所有这些效应的大小都没有近红外光谱严重。
定量拉曼光谱与许多其它的光谱技术不同,它是单光束零背景测量。谨慎地进行样品测定以及使用设计合理的仪器可以使这种变异减到最小,但是并不能全部消除。所以,绝对的拉曼信号强度很难直接用于待测物的定量。变异的潜在来源是样品的不透明性和样品的不均匀性、照射样品的激光功率的变化以及光学几何学或样品位置的变化。这些影响可以通过能重复的或有代表性的样品处置方式予以减小。
由于拉曼信号绝对强度的波动,使用内标是最普通和有效的减少可变性的方法。内标方法有几种变通选择。可以有目的地加入一种内标,该内标应具有与待测物互不干扰的独特谱带以便检测。在溶液中,也可利用溶剂的独特谱带,因为溶剂随样品不同将相对保持不变。另外,在制剂中,如果赋形剂量大大超过待测组分,则可以使用该赋形剂的峰。在假设激光和样品定位的改变将会同等地影响全光谱的前提下,全光谱同样可以用作参比。
样品测定中需考虑的重要因素还有光谱的污染。拉曼是一种可以被许多外源影响掩蔽的弱效应。普通的污染源包括样品支持物(容器或基质)和周围光线。通常,这些问题可以通过细致的实验方法来识别和解