绝对地应力测量是通过测量某地点某一时刻的地应力大小和方向以确定此地此时的地应力状态的测量方法。
绝对地应力测量(absolute groundstress measurement)是通过测量某地点某一时刻的地应力大小和方向以确定此地此时的地应力状态的测量方法。地应力恢复法、地应力解除法、钻孔加深法、水力压裂法和声发射法均属这种测量方法。
岩体的“高地应力”、“极高地应力”和“地应力”是如何区分的?
以“裂纹初始应力值sigma_c”为边界,低于此应力值的应力区域称为低应力区,不存在微裂纹的断裂的扩展现象
地应力是存在于地壳中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。广义上也指地球体内的应力。它包括由地热﹑重力﹑地球自转速度变化及其他因素产生的应力。地质力学认为﹐地壳内的应力活动是...
地应力是如何形成的,控制某一工程区域地应力状态的主要因素是什么?
地应力是存在于地层中的未受工程扰动的天然应力,其形成主要与地球的各种运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。其中,构造应力场和重力...
通过对大量实测地应力资料的深入分析和对云南丽江地区、川西北氓江上游地区的现场地质调查,结合系统的数值模拟分析,进行了断裂构造对地应力场的影响及其工程意义的研究:(1)系统研究了地应力的形成因素和影响因素,阐明了断裂在地应力场形成中的作用;(2)分别研究了活动断裂和非活动断裂对地应力场的影响:(3)研究了云南丽江地区和川西北岷江上游地区的断裂构造格架、主要断裂的现今活动性及其对应力场的影响;(4)应用离散元法研究了断裂引起附近应力场变化的规律及其机理:(5)通过实例研究阐明了断裂构造对地应力场影响的工程意义.通过上述研究,本文取得了如下进展和新认识: (Ⅰ)重力作用和地质构造运动是形成地应力的两个最基本的因素,地质构造、地形、岩性等则是影响地应力的重要因素,而断裂构造是造成地壳岩体中应力发生复杂变化的主要因素之一. (2)不论是单一活动断裂还是复合活动断裂,均对岩体中的应力场有明显的影响。活动断裂附近的主应力方位和量值均不同程度地发生变化,而这种变化主要限于断裂附近一定距离内。同一条断裂不同段具有不同的应力状态,活动断裂附近的应力是随时间而变化的,特别是在地震活动区。复合活动断裂能造成在断裂复合部位的局部应力集?
基于对南水北调西线一期工程场区现场水压致裂地应力测试工作,得出如下初步结论:(1)各线路孔中最大水平主应力值最高约为25 MPa,最大水平主应力方向均为NNE或NEE;(2)各坝址孔中最大水平主应力值最高约为17 MPa,最大水平主应力方向受局部地形地势影响变化较大,但大多数孔方向仍为NNE或NEE;(3)在试验深度范围内,线路孔侧压系数随着钻孔深度的增加逐渐减小;当测试深度在200 m以下时,侧压系数值基本维持在2左右;(4)各测孔侧压系数均大于1,表明工程场区地应力以构造应力为主导;(5)在测试深度范围内,各测孔的最大、最小水平主应力随岩层深度的增加均有增大趋势;(6)回归分析结果表明线路孔的最大水平主应力值随深度呈现良好的线性关系;(7)由于隧洞洞室埋深较深,且穿越高应力区,存在中等强度岩爆或流变的可能性。
其原理为:有的利用岩石的应力、应变关系,如应力恢复法、应力解除法和钻孔加深法等;有的利用岩石受应力作用时的物理效应,如声波法和地电阻率法等。根据测量的结果,又可分为绝对和相对两种地应力测量。用现有测量方法测出的地应力中,不仅包含构造应力,还包含其他因素,如重力、地热等引起的非构造应力。地应力测量对地质构造研究、地震预报和矿山、水利、国防等工程中有关问题的解决具有理论和实际意义。它是地质力学研究的重要内容之一,通过测量发现,最大主应力的方向几乎都是接近水平的。 2100433B
测量元素的放射性活度
测量放射性活度的方法, 随放射性核素的不同而不同。按测量方式可分为两大类。一类是用测量装置直接测量放射性核素所发生的衰变率,不必依赖于其他测量标准的比较,这类方法称为绝对测量。另一类是相对测量,即需要借助于其他测量标准来校准测量装置,再利用经过校准的测量装置来测量放射性核素的衰变率。
近年来,各国都在相继研究氡活度的绝对测量方法,并将其作为新的氡活度标准测量方法。双滤膜测氡法,从方法原理上说可以认为是一种绝对的测氡方法,由美国人发明创立,20 世纪70年代在美国流行。1972 年托马斯(Thomas)对其进行了理论推导,使该方法达到了比较完善的地步 。1996 年,法国国家标准电离辐射实验室(LaboratoirePrimaire des Rayonnements Ionisants,LPRI)率先提出了一种全新的222Rn 活度绝对测方法:在真空环境下,将标准镭源产生的氡气冷凝在一个冷凝托盘上,使用α 半导体探测器对该冷凝源进行小立体角测量,可以精确得到冷凝后固体氡源及其子体粒子的能谱以及计数率,从而实现对氡活度的绝对测量 。该实验所得的氡活度测量结果的不确定度小于0.5% 。2001 年德国PTB 实验室Ingo Busch 采用正比计数管用于222Rn 的绝对测量,该方法将氡气充入末端具有特殊电极结构的多电极正比计数管(multi-electrode proportional counter,MEPC)内,测量氡气产的α 粒子电离正比计数管内气体产生的电脉冲信号,并且通过计算机辅助处理所得能谱来实现绝对测量,测量方法的不确定度小于2% 。
在我国,对氡活度绝对测量方法的研究尚属起步阶段,2005 年,南华大学核科学与技术学院为解决220Rn 与其子体在测量过程中不能建立辐射平衡状态,难以建立220Rn 的标准测量装置的问题,研制了一种用于绝对测量220Rn 的结构特殊的ZnS(Ag)小闪烁室。该测量方法对一般的闪烁室进行了改进,使其对222Rn /220Rn 及其子体α 粒子的探测效率为100%。
冷凝小立体角氡活度绝对测量方法具有,测量结果相对不确定度最低(< 1%),能量分辨率高,便于以气体方式传递,方便应用于氡室,分装后也可以作为标准氡气源直接进行仪器校准的特点。但该方法的装置成本高,对维持低温真空状态实验条件的要求较高,操作相对复杂。多电极正比计数管氡活度绝对测量方法装置相对简单,正比计数管的测量方法成熟,测量结果相对不确定度相对较低(< 2%)。该方法虽然通过加入多个圆环电极,一定程度上解决了端效应修正的问题,且研究对死时间、本底、甄别阈和壁效应等问题的修正,但在实验中还有包括吸收效应、积电效应等未考虑的不确定度影响因素,具有改进的空间。小闪烁室氡活度绝对测量方法装置简单,方法原理成熟,采样速度快,受环境温度、相对湿度等因素的干扰较小。可是该方法不能测量氡的α 能谱,因此无法区分氡及其子体的能谱特性。同时,该方法受结构复杂,链接管道直径的变化以及制作工艺的影响,存在可以提高和改进之处,有进一步可研究的空间。
电容器损耗因数的绝对测量法
中国计量科学研究院用真空可变间隙电容器法,在60 KHZ ~10kHz 范围内,对标准电容器的损耗因数进行了绝对侧定, 并且用环形交叉电容器方法进行验证。两种方法同时测定1pF电容器的损耗因数(1kHz下), 两者仅差2 x 10-7。对10pF、100pF及1000pF电容器损耗因数测定值的不确定度(1KHZ下),分别为1 x 10-7、1.5 x 10-7和3 x10-7。所研制的损耗因数绝对测量装置包括三个部分: 带有抽真空系统的一套可变间隙电容器(1~10pF, 10~100pF, 100~1000pF);在高、低电位均有辅助支路的变压器电桥; 一组密封充氮的标准电容器(1、10100 及1000 p F 各4 只); 以及1只环形交叉电容器(1pF),用于旁证实验。
光学材料光学均匀性的绝对测量法
光学均匀性是光学材料的重要指标,高精度的测量方法一般采用绝对测量法,而该方法步骤繁琐,容易受环境影响。根据波长移相干涉仪的移相特点,提出了测量光学材料光学均匀性的波长调谐两步绝对测量法。该方法在波长移相干涉仪中通过平行平板放入测量和空腔测量两个步骤得到平行平板的光学均匀性。在模拟仿真验证方法的正确性后,进行了实验研究,并与传统的绝对测量法的测量结果进行比较。结果表明,波长调谐两步绝对测量法可用于测量平行平板的光学均匀性,且测量步骤简单,精度较高。
绝对测量法是关注参数绝对的值的测量方法,而相对测量法主要关注的是步进时的增量。
绝对式检测是指:每个被测点的位置都从一个固定的零点算起;增量式位置检测是指:只测位移增量,每检测到位置移动一个基本单位时,输出一个脉冲波或正弦波,通过脉冲计数便可得到位移量。
直接测量是指位置检测装置所测量的对象就是被测量本身。而采用安装在电机或丝杠轴端的回转型检测元件间接测量机床直线位移的检测方法,叫做间接测量。