弧形闸门启闭力小,起吊点的运动轨迹是弧线,露顶式或宽高比较大的弧门多用两个吊点,启闭设备多采用一门一机的布置。根据建筑物的结构,弧形闸门的启闭形式常采用:吊点设在门叶面板前,采用钢丝绳卷扬机或板链式启闭机;吊点设在门叶面板后的梁系或支臂上,可采用钢丝绳卷扬机和液压启闭机。弧形闸门液压启闭机的缸体一般作成可摇摆式,以达到布置紧凑,设备重量也可减轻。
包括侧止水座、底坎止水座、顶止水装置和支铰座承重构件,一般均埋入混凝土相关部位表面以内,起止水严密和承重作用。中、小型及承受总水压力不大的弧门止水装置用一般橡皮,潜孔式高压力弧形闸门用特制密封橡皮。露顶式弧形闸门的支铰座承重构件一般均埋入闸墩的悬伸牛腿内;潜孔式弧形闸门支铰座承重梁有的直接埋入大体积混凝土内,有的两端插入边墙内锚固。
弧形闸门的本体由门叶、支臂、支承铰和止水装置四部分组成。门叶是近似平面体系的弧形受压面,由弧形面板和主次梁的梁格体系构成。门叶梁格布置有主横梁系与主纵梁系两种形式。主横梁系多用于露顶式或宽高比较大的弧形闸门;主纵梁系常用于高水头宽高比较小的潜孔式弧形闸门。弧形闸门的支臂支撑门叶并传递径向合力于支铰轴上。特窄的弧形闸门也有做成一个支臂框架的,称为独支臂弧形闸门。支臂有直支臂和斜支臂之分,后者多用于孔口宽度大的露顶式弧形闸门。每侧支臂多由两根承压构件(柱)组成。对高度较大的,每侧也有用三根承压构件的。支承铰由连接支臂的铰链、固定轴和固定铰座组成。铰座牢固地与建筑物上的埋设构件联接,并传力于基础上。支铰要转动灵活,其安装位置应高出下游水面。支承铰的形式有圆柱铰和圆锥铰等。圆柱铰构造比较简单,制造、安装也较方便,应用普遍;圆锥铰多用于大跨度(宽)露顶式弧形闸门上。
平面钢闸门 造价比弧形钢闸门 相对还低 维护好维护,好简修 弧形钢闸门 造价相对高 性能高!安装复杂,
主要区别。(1)门叶不进入左右两门槽内,即门叶宽度略小于闸孔净宽,每侧间隙为3—4厘米,以使闸门能在闸孔内转动;(2)闸门的支承采用四个悬臂式主轮,闸门仅此四个悬臂式主轮伸入闸墩的门槽内,并使上、下主...
在水工混凝土结构设计规范(SL/T 191-96)第10.9条中有弧门支座的计算。这一部分采用抗裂设计也是考虑结构的耐久性。一般设计的关注重点都是扇形筋,容易忽略这一部分的配筋是否合适。
①按门顶以上水位的深度分为露顶式和潜孔式。水库水位不超过门顶称露顶式弧形闸门(也称表孔弧形闸门)。水库水位高于门顶称潜孔式弧形闸门(也称深孔弧形闸门或高压弧门)。
②按传力支臂形式分为斜支臂式和直支臂式。前者多用于宽高比较大的孔口。后者多用于宽高比较小的孔口。
③按支承铰轴的形式分为圆柱铰、圆锥铰、球形铰和双圆柱铰式弧形闸门。
④按门叶结构分为主纵梁式和主横梁式弧形闸门等(受背水压的称反向弧门)。
弧形闸门在世界各国得到广泛的应用。1949年以来,中国在水利工程上已经应用了各种孔口尺寸、各种类型的弧形闸门作为水道的工作闸门,在主要尺度方面都已进入了世界大型弧形闸门的行列。80年代以来,已开始采用偏心圆柱铰,对耐压高、伸缩率大的特种止水橡皮的试验研究也有进展。
偏心铰式弧形闸门在启闭过程中其受力状态与常规闸门有所不同,受力条件较为复杂,准确计算闸门启闭力难度较大。设计人员在确定该类闸门的启闭机容量时尚无统一的规范可循。以水布垭放空洞工作闸门为研究实例,通过水工模型全程模拟了偏心铰闸门启闭的运行状况,利用脉动压力和拉压传感器测量无摩擦情况下的闸门启闭力,在此基础上,分析计算了原型闸门运行时所受止水摩擦力后的闸门启闭力,重点研究了偏心铰闸门运行时启闭力的变化特征,并将试验和计算成果绘制成启闭力曲线,为设计人员选取启闭机容量提供了依据。原型闸门在投入运行后经过了超高设计水头的考验,各项指标均满足要求,闸门运行正常。
1982年在湖北省咸宁县横沟镇首次建造了浮箱式自动启闭弧形闸门,运行效果较为理想。文章对其工作原理、总体布置、结构设计作了介绍,分析了所存在的问题,并提出了改进意见。
本标准规定了潜孔压紧式弧形闸门的基本要求、技术要求、试验方法、检验规则、标志、包装、运输和质量承诺。
本标准适用于水利水电工程和其他工程用潜孔压紧式弧形闸门(以下简称:闸门)。
2100433B
在弧形闸门水平支铰轴后设置水箱,利用门体自重和水体重自动启闭的闸门。
hydraulic operated radial gate with back tank
在弧形闸门水平支铰轴后设置水箱,利用门体自重和水体重自动启闭的闸门。2100433B