中文名 | 焊接:扩散焊 | 所属分类 | 焊接方法 |
---|---|---|---|
类 别 | 工业名词 | 适用领域 | 工业生产 |
将焊件紧密贴合﹐在一定温度和压力下保持一段时间﹐使接触面之间的原子相互扩散形成联接的焊接方法。影响扩散焊过程和接头质量的主要因素是温度﹑压力﹑扩散时间和表面粗糙度。焊接温度越高﹐原子扩散越快。焊接温度一般为材料熔点的0.5~0.8倍。根据材料类型和对接头质量的要求﹐扩散焊可在真空﹑保护气体或溶剂下进行﹐其中以真空扩散焊应用最广。为了加速焊接过程﹑降低对焊接表面粗糙度的要求或防止接头中出现有害的组织﹐常在焊接表面间添加特定成分的中间夹层材料﹐其厚度在0.01毫米左右。扩散焊接压力较小﹐工件不产生宏观塑性变形﹐适合焊后不再加工的精密零件。扩散焊可与其他热加工工艺联合形成组合工艺﹐如热耗-扩散焊﹑粉末烧结-扩散焊和超塑性成形-扩散焊等。这些组合工艺不但能大大提高生产率﹐而且能解决单个工艺所不能解决的问题。如超音速飞机上各种钛合金构件就是应用超塑性成形-扩散焊制成的。扩散焊的接头性能可与母材相同﹐特别适合於焊接异种金属材料﹑石墨和陶瓷等非金属材料﹑弥散强化的高温合金﹑金属基复合材料和多孔性烧结材料等。扩散焊已广泛用於反应堆燃料元件﹑蜂窝结构板﹑静电加速管﹑各种叶片﹑叶轮﹑冲模﹑过滤管和电子元件等的制造。
参考书目
﹒Φ﹒卡札柯夫著﹐何康生﹑孙国俊译﹕《材料的扩散焊接》﹐国防工业出版社﹐北京﹐1982。
铝合金的焊接可以选用四种方式:直流氩弧焊反接,直流氩弧焊正接,交流氩弧焊,数字化气保焊机。其中,直流氩弧焊反接仅用于1~2个厚的板、小电流焊接,如果电流增大,钨针烧损很快,焊缝会夹钨变脆。直流氩弧焊正...
用细钨针,小陶瓷嘴,小电流,低脉冲,小占空比除此之外,就是你技术的问题了,等分角,向后倾斜75°走,添丝融焊,等方法,手不要抖,可以竖起小拇指固定,
如果需要焊接后的螺柱位置精确,可以先在板上打孔攻丝,然后把螺栓拧上,焊死填平就可以了,如果不需要精确则直接把螺栓点焊稳了,然后角焊填实就可以了。两块板要焊在一起可以在其中一块上打孔然后塞焊,如果板材较...
T91钢熔焊时易出现硬质相及裂纹,严重影响其焊接性能。采用FeSiB和NiB2复合中间层扩散焊焊接T91钢,研究了不同温度下扩散焊接头的组织和性能。结果表明:采用复合中间层合金和合适的焊接温度,可避免T91钢熔焊时易出现硬质相及裂纹,接头组织与母材相似且连续,力学性能达到母材的水平。
对TA17钛合金与1Cr18Ni9Ti不锈钢的焊接接头强度进行了实验研究。采用恒温恒压扩散焊、相变超塑性扩散焊和脉冲加压扩散焊实现了钛合金和不锈钢的焊接,测试了焊接接头的强度,并对接头进行了金相观察。结果发现:3种接头的强度都达到了264MPa,且接头为多层次的多相组织。物相分析发现钛合金不锈钢接头中存在Fe2Ti和σ (FeCr)两种脆性金属间化合物。脉冲加压扩散焊能促进扩散过程,减少金属间化合物的形成,改善其分布,是一种较有前景的扩散焊方法。
扩散焊接是压焊的一种,它是指在相互接触的表面,在高温压力的作用下,被连接表面相互靠近,局部发生塑性变形,经一定时间后结合层原子间相互扩散而形成整体的可靠连接的过程。扩散焊接过程大致可分为3 个阶段,第1 阶段为物理接触阶段,被连接表面在压力和温度作用下,总有一些点首先达到塑性变形,在持续压力的作用下,接触面积逐渐扩大最终达到整个面的可靠接触;第2 阶段是接触界面原子间的相互扩散,形成牢固的结合层;第3 阶段是在接触部分形成的结合层,逐渐向体积方向发展,形成可靠连接接头。
当然,这3 个过程并不是截然分开的,而是相互交叉进行,最终在接头连接区域由于扩散、再结晶等过程形成固态冶金结合,它可以生成固溶体及共晶体,有时生成金属间化合物,形成可靠连接。焊接参数的选择就是要控制这些因素,最终得到综合性能良好的接头,不但考虑扩散形成原子间的相互作用,同时应考虑界面生成物的性质。
扩散焊接的参数主要有:温度、压力、时间、气体介质、表面状态和中间层的选择等。其中最主要的是温度、压力、时间。温度影响被焊材料的屈服强度和原子的扩散行为,对消除空隙起着决定性作用,扩散温度的经验公式为T = (0. 6~0. 8) Tm ,其中Tm 为被焊零件材料中的最低熔点。
压力仅在焊接的第1 阶段中是必要条件,加压的目的是使连接处微观凸起部分产生塑性变形,使之达到紧密接触状态,并提供变形能为原子扩散创造条件。所选压力通常保持在稍低于所选温度下的屈服应力,一般为3~10MPa 。形成接头所需保温时间与接头的组织和成分的均匀化密切相关,主要取决于连接材料的冶金特性及焊接时的温度和压力,一般需几分钟到几个小时。
近几年兴起的放电等离子烧结技术( SparkPlasma Sintering ,简称SPS) ,具有低温、快速、组织均匀的特点,已引起国外(尤其是日本) 材料科学与工程界的极大兴趣。SPS 系统除成功地应用于梯度功能材料(FGM) 、金属基复合材料(MMC) 、纤维增强复合材料( FRC) 、多孔材料、高致密度、细晶粒特种新材料的制备和硬质合金的烧结外,在多层金属粉末的同步焊接、金属粉末的焊接以及固体- 粉末- 固体的焊接等方面也已有广泛的应用。日本的深谷保博等人采用SPS 技术扩散焊接Al2O3 陶瓷和SUS304 不锈钢, 有限元方法(FEM) 弹塑性分析表明:脉冲大电流加热连接有助于缓和Al2O3 中的残余应力 。
异种材料的扩散焊接是一门综合性技术,涉及范围广,学科交叉性强。尽管人们在这方面进行了大量的工作,也取得了显著的成果,但在界面反应的研究、残余应力分析、接头性能评定及连接工艺等方面还有待深入研究 。2100433B
近年来随着材料科学的发展,新材料不断涌现,在生产应用中,经常遇到新材料本身或与其它材料的连接问题。如陶瓷、金属间化合物、非晶态材料及单晶合金等,用传统的熔焊方法,很难实现可靠的连接。而一些特殊的高性能构件的制造,往往需要把性能差别较大的异种材料,如金属与陶瓷、铝与钢、钛与钢、金属与玻璃等连接在一起,这用传统的熔焊方法也难以实现。为了适应这种要求,近年来作为固相焊接方法之一的扩散焊接技术引起了人们的重视,成为焊接领域的研究热点,正在飞速发展。这种技术已广泛应用于异种材料的焊接,其中,异种金属,陶瓷/ 金属异种材料焊接构件在航空航天领域具有广泛的应用前景 。