工作原理相对简单,主要包括燃料氧化和氧气还原两个电极反应及离子传输过程。早期的燃料电池结构相对简单,只需要传输离子的电解质和两个固态电极。当以氢气为燃料,氧气为氧化剂时,燃料电池的阴阳极反应和总反应分别为:
阳极:H2→2H 2e-
阴极:1/2O2 2H 2e-→H2O
总反应:H2 1/2O2→H2O
其中,H2通过扩散达到阳极,在催化剂作用下被氧化成和e-,此后,H 通过电解液到达阴极,而电子则通过外电路带动负载做功后也到达阴极,从而与O2发生还原反应。
基本结构主要是由四部分组成,分别为阳极、阴极、电解质和外部电路。通常阳极为氢电极,阴极为氧电极。阳极和阴极上都需要含有一定量的电催化剂,用来加速电极上发生的电化学反应,两电极之间是电解质。
便携式电源市场销售额的逐年増长吸引了许多电源技术,其产品包括:笔记本电脑、手机、收音机及其他需要电源的移动设备,为方便个人携带,便携式移动电源的基本要求通常要求电源具有高比能量、质轻小巧等特点。而燃料电池的能量密度通常是可充电电池的5到10倍,使其具有较大的竞争力.此外,燃料电池不需要额外充电的特点也使它能适应更长久的野外生活。目前,己有直接甲醇燃料电池(DMFC)和PEMFC被应用为军用单兵电源和移动充电装置上。成本、稳定性和寿命将是燃料电池应用于便巧式移动电源的所需要解决的技术问题。
固定电源包括紧急备用电源、不间断电疗、偏远地区独立电站等。目前,燃料电池每年占据全球约70%的兆瓦级固定电源市场,相比于传统的铅酸电池,燃料电池具有更长的运行时间(大约为铅酸电池的5倍)、更髙的比能皇密度、更小的体积和更好的环境适应性。对于智能电网难以到达的偏远地区和紧急事故发生地,独立电站被认为是最经济且可靠的供电方式。在我国多次的地展灾害中,燃料电池被用作独立电站,为救灾工作发挥了重要作用。需要注意的是,固定电站通常需要较长的寿命(大于80000小时),这是燃料电池技术应用于固定电站的最大技术挑战。
根据电极反应方程式可知,此氢氧燃料电池电解质是碱性电解质溶液中, 负极反应2H2-4e-+4OE-=4H2O中的4OH-,来自于溶液,不是正极反应, 但正极反应O2+2H2O
碱性溶液中,负极是Al+(4OH-)-(3e-)=(ALO2-)+2H2O 中性溶液中,Al- 3e-=AL3+ 外电路,就是指...
近日,日本的DoCoMo公司和Aquafairy公司共同宣布它们将为移动电话开发一种“水燃料电池”以取代目前的锂离子电池和尚在试验阶段的手机用甲醇燃料电池。之前,这两个公司已经联手开发成功了一种“电解...
燃料电池课件 (2)
电池的活性物质为H2(g)和O2(g);根据电解质性质的不同有酸性、碱性、熔融盐燃料电池;按使用温度有低温(75~100℃)、中温(100~500℃)、高温(500~1000℃)型燃料电池。例如离子交换膜低温酸性氢-氧燃料电池,正、负极为少量贵金属催化剂与导电金属网制成,将它们分别压于离子交换膜两侧,电解液为高浓度的磷酸,工作温度为40~60℃。又如低温碱性氢-氧燃料电池,负极为镍粉和铂、钯烧结而成,正极为有效面积很大的银电极,电解液为高浓度的KOH溶液,隔膜为石棉膜或钛酸钾膜,工作温度为80~90℃。高温固体电解质燃料电池,复合氧化物(ZrO2)0.85(CaO)0.15、(ZrO2)0.9(Y2O3)0.1,碳酸盐等为固体电解质,高温下它们的离子能够导电。将固体电解质制成短管,在其内外壁涂覆多孔的Pt作为正、负极。工作温度为1000℃。
一氧化碳-氧燃料电池是一种能量转化装置,它是按电化学原理,即原电池工作原理,等温的把贮存在一氧化碳和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。燃料电池主要由四部分组成,即阳极、阴极、电解质和外部电路。一氧化碳气和氧化气分别由燃料电池的阳极和阴极通入。一氧化碳气在阳极上放出电子,电子经外电路传导到阴极并与氧化气结合生成离子。离子在电场作用下,通过电解质迁移到阳极上,与一氧化碳反应,构成回路,产生电流。同时,由于本身的电化学反应以及电池的内阻,燃料电池还会产生一定的热量。电池的阴、阳两极除传导电子外,也作为氧化还原反应的催化剂。当燃料为碳氢化合物时,阳极要求有更高的催化活性。阴、阳两极通常为多孔结构,以便于反应气体的通入和产物排出。电解质起传递离子和分离燃料气、氧化气的作用。为阻挡两种气体混合导致电池内短路,电解质通常为致密结构。
有机含氮化合物广泛存在于自然界,是一类非常重要的化合物。许多有机含氮化合物具有生物活性,如生物碱;有些是生命活动不可缺少的物质,如氨基酸等;不少药物、染料等也都是有机含氮化合物。