与单稳态触发器相比,施密特触发器的最大特点是不仅具有两个稳定状态A 和B,而且使其从稳定状态A转换到稳定状态B和使其从稳定状态B转换到稳定状态A时需要的触发电平不一样。
施密物触发器可由分立元件构成,也可用门电路、运算放大器或电压比较器构成。不同性能的专用集成施密特触发器也很多。
在基本RS触发器的基础上,增加一个非门G1和一个二极管VD组成的施密特触发器。
为了便于说明问题和突出施密特触发器的工作特点,假设其输入信号ui为三 角波,而且设定等于和大于1.4 V以上为高电平“1”,小于1.4 V为低电平“0”,二 极管VD的导通电压为0.7 V。 另外,
在0~t1期间,输入电压ui由0V慢慢上升至0.7V,由于ui低于1.4 V,故电 路的输入电平为“0”,非门G1输出“1”。在ui由0V上升到0.7 V时,RS触发器 的S端由电压始终低于1.4 V(端电压比ui电压高0.7V),即
在t1~t2期间,输入电压ui由0.7 V慢慢上升但尚未达到1.4 V时,由于ui低于1.4 V,故非门G1的输入电平为“0”,其输出为“1”,即
在t2~t3期间,从t2开始,输入电压ui将高于1.4 V,非门G1的输入电平始终 为“1”,其输出为“0”,即
t4时刻后,从t4开始输入电压ui低于0.7 V,非门G1的输入电平始终为“0”, 其输出保持为“1”,即
利用电路的翻转性,可以将边沿变化缓慢的信号,整形成边沿很陡的矩形波。
如果电路中不存在回差现象,则输出波形就会出现顶部受干扰而输出开口的波形。
可以看出,输入信号两次触发电压是存在差距的,这种情况称为回差现象,这两个电压的差值称为回差电压 △U。
由上可见,施密特触发器将输入的三角波转变为矩形波。不难推知,如果施密 特触发器输入信号为一个正弦电压,其输出将是一个矩形波,这就是它的波形变换作用;如果其输入信号是不规则的矩形波,则其输出将是比较规则矩形波,这就是施密特触发器的脉冲整形作用。
施密特触发器的阀值电压是不稳定。1、施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密...
1. 波形变换可将三角波、正弦波、周期性波等变成矩形波。2. 脉冲波的整形数字系统中,矩形脉冲在传输中经常发生波形畸变,出现上升沿和下降沿不理想的情况,可用施密特触发器整形后,获得较理想的矩形脉冲。3...
施密特触发器:电位触发方式,可以控制触发电位。它也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密...
显然,利用施密特触发器的这些特性,还可以 将升降变化缓慢的波形转化成上升沿、下降沿都很 陡峭的矩形波。另外,利用施密特触发器具有上门 限电压UK的特性,可以使低于UK的无用电压对 电路不起作用,从而起到抗干扰的作用。由于施密 特触发器的这些特点,在数字电路中尤其在脉冲产生和整形电路中得到了广泛应用。
实际使用中的集成施密特触发器由多个门电 路组成,例如,74LS13(74HC13)、74LS14 (74HC14)、74LS18(74HC18)、74LS24、CD4093、CD40106等。
以四输入双与非施 密特触发器74LS13为例。
该集成电路的逻辑功能是:只有当A、B、C、D四个输入端电平都大于上门限电压UK时,Y 才输出低电平,属“与非”逻辑关系;若其中一个输入端电平降到下门限电压UT,Y 便输出高电平。
传统施密特型压控振荡器存在输入电压下限值较高、最高振荡频率较低等缺点。针对这两个问题,文中介绍了一种具有新型充放电电路结构的施密特型压控振荡器,并在0.18μm工艺下对电路进行了仿真。结果表明,相对于传统施密特型压控振荡器,新型振荡器输入电压下限值有所下降,且最高振荡频率也有明显提升。
数字系统中,常常需要施密特触发器,特别是回差电压很大,并且可以根据需要随意调节的施密特触发器。采用可编程控制器状态转移图和功能指令中的比较指令这一特殊方法设计了此款施密特触发器,通过调整可编程控制器构成的施密特触发器的上限门坎电平和下限门坎电平,巧妙地完成了回差电压很大、回差电压可随意调节这一功能。该设计具有设计简单,完成方便,不需要对电路重新组装的特点。
1.系统的供电电压允许偏差。国家标准《电能质量供电电压允许偏差》GB 12325-2008规定:
(1)35kV及以上供电电压正、负偏差的绝对值之和不超过额定电压的10%。若供电电压上下偏差同号(均为正或负)时,按较大的偏差绝对值作为衡量依据。
(2)10kV及以下供电电压允许偏差为额定电压的±7%。
(3)0.22kV单相供电电压允许偏差为 7%、-10%。
2.用电设备端电压允许偏差。国家标准《供配电系统设计规范》GB50052-95规定:
(1)电动机允许电压偏差为额定电压的±5%。
(2)照明时,允许电压偏差在一般工作场所为额定电压的±5%;对于远离变电所的小面积一般工作场所,难以满足上述要求时,可为额定电压的 5%、-10%:应急照明、道路照明和警卫照明等为额定电压的 5%、-10%。
3.其他用电设备当无特殊规定时允许电压偏差为额定电压的±5%。
产生电压偏差的根本原因是电流通过系统元件时造成的电压损失。对于供配电系统来说。如果系统中用电负荷不变,区域变电站提供的母线电压也不变,则系统沿线的电压损失小变,这时沿线各点电压偏差就不会改变。但事实上系统中的实际负荷是在最大负荷和最小负荷之间不断变化的,因此沿线某点电压偏差也就在电压偏蔗最大值和电压偏差最小值之间变动。
(一)供配电系统供电端的高压方式
供配电系统要将电压限制在规定的范围内.必须进行电压调节。对于电力系统来说,应采取合适的调压方式保证向用户供应电压合格的电能。常用的调压方式有:
1.逆调压。逆调压就是负荷大时电网电压向高调,负荷小时电网电压向低调。以恰当地补偿电网的损失。110/35/10kV变压器为调压变压器,变压器二次侧母线电压,利用变压器的有载调压分接头,随着负荷的大小进行调节。当负荷大时,线路电压损失大,为保证用户端的电压偏差不超过规定值,将母线电压调高;当负荷小时,线路电压损失小,为保证用户端的电压不超过规定值。将母线电压调低。
2.稳压(常调压)。无论负荷如何变化,均保持调压的枢纽点的电压不变。这种方法既很困难,也不经济,只有在线路长度、负荷配置到比较理想的情况下,才易达到。
3.不调压。不作有载调压处理,这时,对于相同的系统。负荷大时,由于线路上电压损失大,电压负偏差就大;负荷小时,由于线路上电压损失小,电压正偏差就大。因此电压偏差不易满足要求.
(二)中低压系统电压偏差的改善措施
中低压系统限制和减少电压偏差的系统措施有:正确选择变压器的电压分接头;降低系统阻抗;采用无功功率补偿措施;平衡三相负荷等。
1.正确选择变压器的电压分接头.系统中各点电压水平高低不一,合理选择变压器的分接头,可对电压水平进行调整,将实际电压与额定电压的偏差限制在一定的范围。
2.降低系统阻抗。电压偏差与电压损失有极大的相关性,电压损失越大,电压偏差的限制越困难。而供电元件的电压损失又与阻抗大小成正比,因此,在经济技术合理时,采用如下措施,可减少电压损失。
(1)减少变压级数,可降低变压器产生的电压损失。
(2)增加线路截面,可减小线路阻抗,减少线路电压损失。
(3)因为电缆线路的电抗值比相同截面的架空线路和普通绝缘导线小得多,用电缆线路替代架空线路或普通绝缘导线,可有效减少电压损失。
3.采取无功功率补偿措施。从电压损失的计算公式可知,电压损失的大小取决于元件阻抗和有功功率、无功功率的大小。有功功率大小不能改变,而无功功率可以通过补偿措施减小。因此,合理采用无功功率补偿措施,使用以高压为主要目的自动无功补偿装置,当负荷变化时,相应调整电容器的接入容量,可有效降低系统电压损失,从而在一定程度上缩小电压偏差的范围。
4.平衡三相负荷。在三相四线制时,如三相相负荷分布不均,将产生零序电压,使零点移位,一相电压降低,另一相电压升高,增大了电压偏差。同样,线间负荷不平衡,则引起线间电压不平衡,增大电压偏差。所以,在分配单相负荷时,应尽量做到三相平衡。 2100433B
供配电系统改变运行方式和负荷缓慢地变化会使供配电系统各点的电压也随之变化,这时各点的实际电压与系统标称电压之差△U称为电压偏差。电压偏差△U也常用与系统标称电压的百分比表示。即:
式中:△U--电压偏差百分比;U一实际电压:UN电网标称电压。