中文名 | 高性能填充β-PP复合材料的制备原理与技术研究 | 项目类别 | 面上项目 |
---|---|---|---|
项目负责人 | 麦堪成 | 依托单位 | 中山大学 |
PP及其填充复合材料主要形成强度和刚性高,韧性和冲击强度低的α-PP,采用高韧性β-PP作为基体是发展高性能PP复合材料的有效途径。但至今填充β-PP复合材料发展很慢,关键问题是填料表面α-成核作用的影响,难于通过添加填料和β-成核剂的方法得到高β-晶含量的填充PP复合材料。针对以上问题,本项目提出负载型β-成核剂概念,依据庚二酸与硬脂酸钙合成庚二酸钙β-成核剂的基本原理,探索了庚二酸与含钙或不含钙填料反应形成庚二酸钙的科学问题和具有β-成核作用填料粒子制备技术,证实了PP常用填料对PP结晶发生了α→β成核机理的转变,发明了一种制备简单、成本低廉、β-成核效率高的填充β-PP制备技术。纳米碳酸钙与庚二酸反应形成庚二酸钙负载在纳米碳酸钙粒子表面,获得具有β-成核作用的纳米碳酸钙。填充PP复合材料中的β-晶含量随着碳酸钙用量增加而提高,获得β-晶含量高于95%的碳酸钙填充PP复合材料。而加入填料和β-成核剂的传统方法制备PP 复合材料的β-晶含量低于50%。为了证实这一技术的普适性,探索了含钙的蒙脱土和硅灰石负载庚二酸钙的科学问题,同样获得具有β-成核作用的蒙脱土和硅灰石,其填充PP中的β-晶含量也随β-蒙脱土用量增加而提高,可制备高填充量高的β-晶含量的填充β-PP复合材料。对于不含钙填料,发现先将填料与庚二酸作用后再与含钙物质反应或引入含钙物质后再与庚二酸反应,都可实现填料表面成核机理α→β转变,而获得具有β-成核作用的填料。如MWCNT与庚二酸作用后,再与乙酸钙反应形成庚二酸钙,可得到高β-成核作用的MWCNT。采用传统方法制备MWCNT填充β-PP材料,难于得到高β-晶含量的复合材料。而β-MWCNT填充可获得95%以上β-晶含量的高填充PP纳米材料,且不受MWCNT用量影响。而分子筛经氯化钙或醋酸钙钙化后,再与庚二酸反应可获得高β-成核作用的β-分子筛。其填充PP材料β-晶含量高达95%。以上研究在国内外发表SCI论文28篇,授权发明专利1件,Scopus-分析搜索结果显示为近几年国际上发表β-PP复合材料论文最多的机构和作者,被国外学者认为做出杰出、开创性的工作。该研究对于发展高韧性PP结构与功能材料和填充β-PP材料低成本产业化具有重要科学意义和实用价值。 2100433B
针对目前填充聚丙烯(PP)复合材料都为α-PP基体,冲击强度较低,采用弹性体增韧虽可提高韧性,但引起材料刚性降低。本项目通过研究PP不同填料表面的α-成核作用转化为β-成核作用的科学问题,解决实现填料表面α-成核作用转变为β-成核作用的技术问题,为低成本制备具有高效β-成核作用的填料(简称β-填料)提供科学与技术依据。通过研究β-填料与PP复合制备高韧性的填充β-PP复合材料中β-PP形成的科学问题,解决高性能填充β-PP复合材料的制备技术问题,为低成本制备高性能填充β-PP复合材料提供科学与技术依据。通过不同填料表面成核作用的转变,探索填充PP复合材料中α-和β-成核机理相互转变的规律,为深入研究β-成核机理提供科学依据。本项目实现填料表面α-成核作用转变为β-成核作用和高β-PP含量填充PP复合材料的制备及其研究,具有领先性和创新性,
复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合...
树脂基复合材料、聚合物基复合材料、高分子基复合材料区别???
你指的是碳纤维复合材料吧,增强材料是碳纤维,主要取决于基体材料。比如炭/炭复合材料,是碳纤维增强炭(石墨)基体的复合材料,属于无机材料,主要应用于高温、摩擦方面;碳纤维增强树脂基复合材料,是有...
水泥复合材料的主要特征咱不罗嗦了,对于路桥,一个是增强,一个是自修复。增强材料有金属,有机,无机纤维,比如钢纤维,玻璃纤维,碳纤维,芳族聚酰亚胺等等。自修复机敏水泥以自感知,自诊断,自适应,自修复以及...
1 序言 PP(聚丙烯)是一种在生活中被广泛应用的热塑性树脂, 聚丙烯良好的耐冲 击性、耐热性、绝缘性、可塑性、较低的密度以及低廉的成本使其被广泛应用于 注塑、吹膜、喷丝及改性工程塑料等多种塑料制品领域 [1] 。 虽然拥有众多的优点而饱受青睐, 然而聚丙烯同时也有不少的缺点从而影响 到它一系列的工程化应用。聚丙烯的成型收缩率过大,低温下容易脆裂, 耐磨性 过低等大大限制了聚丙烯的发展,因此,必须对聚丙烯进行改性 [2]。由于各企业 生产工艺的不断改进包括各种新类型催化剂的成功研发,使得改性 PP取代传统 PP,受到众企业的各种青睐。与传统聚丙烯相比,改性聚丙烯在抗冲击、刚性、 光泽、韧性等方面优势明显,这大大促进了聚丙烯的发展 [3] 。 目前,对聚丙烯进行改性的方法主要有:共聚改性、 共混改性及添加成核剂 等方法,在这些方法中,共混改性是企业中被使用的最多的改性方法 [4] 。共混改
江苏理工学院毕业设计说明书 (论文 ) 第 1 页 共 28 页 序言 PP(聚丙烯)是一种在生活中被广泛应用的热塑性树脂, 聚丙烯良好的耐冲 击性、耐热性、绝缘性、可塑性、较低的密度以及低廉的成本使其被广泛应用于 注塑、吹膜、喷丝及改性工程塑料等多种塑料制品领域 [1] 。 虽然拥有众多的优点而饱受青睐, 然而聚丙烯同时也有不少的缺点从而影响 到它一系列的工程化应用。聚丙烯的成型收缩率过大,低温下容易脆裂, 耐磨性 过低等大大限制了聚丙烯的发展,因此,必须对聚丙烯进行改性 [2]。由于各企业 生产工艺的不断改进包括各种新类型催化剂的成功研发,使得改性 PP取代传统 PP,受到众企业的各种青睐。与传统聚丙烯相比,改性聚丙烯在抗冲击、刚性、 光泽、韧性等方面优势明显,这大大促进了聚丙烯的发展 [3] 。 目前,对聚丙烯进行改性的方法主要有:共聚改性、 共混改性及添加成核剂 等方法,在这些方
针对填料表面成核机理α→β转变、填充PP复合材料中α-成核作用与β-成核作用的相互影响和β-晶含量可控技术、填料增强与β-晶韧性协同作用研究很少报道,为结合β-PP的高韧性和无机粒子的增强作用,开发高性能填充β-PP复合材料,重点研究:(1)不同形态(纳米和微米级球状、层状、棒状等)填料表面成核机理α→β转变和表面具有β-成核能力可控的不同形态填料的制备技术,提供一系列不同形态β-填料。(2)同种和异种填料填充PP复合材料中的α-成核作用和β-成核作用相互影响和填充PP复合材料中β-成核能力可控的技术,提供一系列β-晶含量可控的填充PP复合材料。(3)填充PP复合材料的力学性能、断裂机理与β-晶含量、β-球晶结构形态、填料形态及其分散性、界面相互作用关系,填料增强与β-晶增韧协同作用和高韧性填充PP复合材料制备的技术。通过以上研究,制备出高强度、高刚性、高韧性的高性能填充β-PP复合材料
《高性能耐磨铜基复合材料的制备与性能研究》由王德宝、吴玉程著。通过SEM、XRD、TEM和其他实验检测仪器对粉末的机械合金化过程,复合材料的微观组织特征以及机械、物理和摩擦磨损性能进行了系统研究,为拓展新型高性能铜基复合材料的应用领域打下坚实的基础。
《高性能耐磨铜基复合材料的制备与性能研究》以开发高性能导电(热)耐磨铜基复合材料为目标,通过成分和工艺优化,采用机械合金化(MA)、冷压成形和复压复烧工艺制备出了满足性能要求的颗粒增强Cu(—Cr)基复合材料,以寻求最佳的材料制备工艺,满足材料的高强度、高导电(热)性以及优良的摩擦磨损性能要求。