固体电解质是应用在冶金中的具有离子导电性的固态物质,它与快离子导体有所不同的是,固体电解质涵盖离子电导率较低的普通固态离子导体。
这些物质或因其晶体中的点缺陷或因其特殊结构而为离子提供快速迁移的通道,在某些温度下具有高的电导率(1~10-6西门子/厘米),故又称为快离子导体。已经发现几十种快离子导体材料,如卤化物中的RbAg4I5、α-AgI是银离子导体,氧化物中的ZrO2(掺杂CaO)、ThO2(掺杂Y2O3)是氧离子导体,β-Al2O3是钠离子导体等。
中文名称 | 固体电解质 | 又称为 | 快离子导体 |
---|---|---|---|
应用领域 | 新型固体电池 | 涵 盖 | 固态离子导体 |
固体电解质详细内容
solid electrolyte
能斯脱(W.H.Nernst)最早(1899年)研究了 ZrO2-Y2O3固溶体的导电性。1937年出现了用ZrO2基的固溶体组装的高温燃料电池。自从1957年基乌科拉(K.Kiuk-kola)和瓦格纳(C.Wagner)用ZrO2+15mo1%CaO作为固体电解质成功地测定了一些金属氧化物的生成自由焓之后,固体电解质在高温物理化学研究和在气相氧分压和液相氧活度的测定和控制中得到广泛应用。1967年姚(Y.F.Y.Yao)和库默尔(J.K.Kummer)发现了非化学计量比的Na2O与Al2O3的层状复合氧化物Na2O·11Al2O3(又称β-Al2O3)在室温下具有高的电导率,进一步促进了快离子导电材料性质及其结构的研究。
在冶金生产和高温冶金物理化学研究中应用最广的固体电解质是以氧化锆为基体,掺杂以7~20mo1%的二价或三价氧化物(如CaO、MgO、Y2O3和其他稀土氧化物)烧结制成的代位固 溶体高温陶瓷。
纯ZrO2在常温中是单斜晶型,加热至1150℃会发生相变,转变为四方晶型,同时体积收缩大约7%。加入CaO并经过高温煅烧后,形成了CaO与ZrO2的代位固溶体,ZrO2的晶型变为CaF2型的立方晶体,并且不随温度的变化而改变,因而改善其抗热震性。另一方面,一个Ca2+置换一个Zr4+,为保持电中性就要出现一个 O2-的空位。掺杂后的固溶体里有大量的氧离子空位。在高温下,氧离子通过空位可以快速迁移,形成氧离子导电固体电解质。1600℃时,掺杂 15mo1%CaO的 ZrO2的电导率约为 1.0西门子/厘米,高于同温度中高炉渣的电导率(0.24~0.82 西门子/厘米)也大大高于25℃下1NKCl水溶液的电导率(0.1117 西门子/厘米,25℃)。这种 ZrO2高温陶瓷具有高的熔点(2700℃)与极稳定的化学性质。在此固溶体里氧离子空位大量存在,因之氧离子的电导率比钙离子与锆离子的电导率约大1010倍,所以,由它作为电解质而组成的电化学电池电极反应是氧的还原反应:
O2(气)+4e─→2O2- ⑴
和氧离子的氧化反应:
2O2-─→O2(气)+4e ⑵
近年来,聚合物基质的固体电解质发展迅速。其组成为聚合物中掺入碱金属盐。常见的聚合物基质包括聚氧化乙烯(PEO)、聚丙烯腈(PAN)等,常用的碱金属为 锂盐,阴离子对导电性有影响。有些时候基质中所含有的溶剂分子(如碳酸酯)对材料性能有很大影响。此种固体电解质在室温电导率较高。
理化学研究中应用最广的固体电解质是以氧化锆为基体,掺杂以7~20mo1%的二价或三价氧化物(如CaO、MgO、Y2O3和其他稀土氧化物)烧结制成的代位固溶体高温陶瓷。纯ZrO2在常温下是单斜晶型,加热到1150℃会发生相变,转变为四方晶型,同时体积收缩约7%。加入CaO并经高温煅烧后,形成CaO与ZrO2的代位固溶体,ZrO2的晶型变为 CaF2型的立方晶体,且不随温度的变化而改变,从而改善其抗热震性。另一方面,一个Ca2+ 置换一个Zr4+,为保持电中性就要出现一个O2-的空位。掺杂后的固溶体中有大量的氧离子空位。在高温下,氧离子通过这些空位可以快速迁移,形成氧离子导电的固体电解质。1600℃时,掺杂15mo1%CaO的ZrO2的电导率约为1.0西门子/厘米,高于同温度下高炉渣的电导率(0.24~0.82西门子/厘米)也大大高于25℃下1NKCl水溶液的电导率(0.1117西门子/厘米,25℃)。这种ZrO2高温陶瓷具有高的熔点(2700℃)和极稳定的化学性质。在此固溶体中氧离子空位大量存在,因之氧离子的电导率比钙离子和锆离子的电导率约大1010倍,所以,由它作为电解质而组成的电化学电池的电极反应是氧的还原反应:O2(气)+4e─→2O2- ⑴
和氧离子的氧化反应:
2O2-─→O2(气)+4e ⑵
固体电解质作用
通过测定电池电动势可以快速准确地确定气相中的氧分压以及熔体中的氧活度。
测定气相中的氧分压 下面是测定气体中氧分压的氧浓差电池(氧含量探测器)。在以Y2O3稳定的氧化锆管内外壁、涂以铂层,构成内电极和外 电极。内、外电极分别和铂引线相连接。整个电池在 800℃左右的温度下工作。将已知氧含量的参比气体(通常是空气)和被测气体分别导入内电极和外电极,通过测定该电池的电动势E,用下式即可算出被测气体的氧分压:固体电解质式中R是气体常数〔8.314焦/(摩·开)〕;T是绝对温度;F是法拉第常数(96490库/摩);p拪和p嫎分别代表高氧分压侧和低氧分压侧的氧分压,这种氧浓差电池可连续测定各种气氛和烟道气体中的氧含量(例如,小到十亿分之一的氧含量都可测出),用于监测气氛的氧化性及控制燃料燃烧过程。
下图是钢水快速定氧测头的示意图。在用固体电解质制成的管内装入Cr、Cr2O3(或Mo、MoO2)作为参比电极,电解质管外侧浸入待测钢水作为工作电极,由测量电池:
固体电解质
Mo,Cr、Cr2O3│ZrO(+CaO)│【O】,Mo
的电动势,可以计算出钢水中的氧活度及氧含量。这种带有热电偶的快速定氧测头插入钢水后10秒钟内即可同时测出钢水的温度和溶解氧的活度。快速定氧测头的应用,对于控制冶炼过程、提高钢质量和节约铁合金都是有意义的。类似结构的快速定氧测头也在铜、镍和其 他有色金属冶炼研究中得到应用。
电解质管的抗热震性对于快速定氧测头十分重要。部分稳定的(仍保留有部分单斜相)氧化锆电解质比全稳定的氧化锆具有更好的抗热震性。在高温和极低氧分压条件(如1600℃,pO2<10-13大气压)下,氧化锆基的固体电解质会出现部分自由电子导电,影响测定结果。氧化钍基的固体电解质可以用于比上述条件更低的氧分压下的物理化学测量。
固态的离子导体。有些具有接近、甚至超过熔盐的高的离子电导率和低的电导激活能,这些固体电解质常称为快离子导体(fast ion conductor;FIC)。它形成的原因是晶体中的非导电离子形成刚性骨架,晶格内部存在多于导电离子数的可占据位置,这些位置互相连通,形成一维隧道型、二维平面型或三维传导型的离子扩散通道,导电离子在通道中可以自由移动。
黄色: 溶解酸素、硅化合物、有机矿物质、钼、硅、氟化物、其他有机物绿色: 砷()、汞、铅、铜、钠 蓝色: 细菌、病毒、致癌物质、有机磷等(化肥、洗涤剂和农药)红色: 铁及铁锈、细菌 白色: 铅、锌...
钡难溶于水,但钡属于强电解质 (钡)BaSO4虽难溶于水,但溶解的部分完全电离,且BaSO4在熔化状态下也能完全电离,故BaSO4是强电解质。 强电解质是指在水溶液或者熔化状态下能完全电离的电解质,...
CaCO3是强电解质,碳酸钙是碳酸盐类,大部分的盐类都属于强电解质。强电解质:溶于水能够全部电离的电解质,包括强酸、强碱、大多数的盐和活波金属氧化物。弱电解质:溶于水只能部分电离的电解质,包括弱酸、弱...
广泛应用于新型固体电池、高温氧化物燃料电池、电致变色器件和离子传导型传感器件等。也用在记忆装置、显示装置、化学传 感器中,以及在电池中用作电极、电解质等。例如,用固体电解质碘制成的锂-碘电池已用于人工心脏起搏器;以二氧化锆为基质的固体电解质已用于制高温测氧计等。
虽然采用钠离子的全固体电池也已经逐渐展开研究,但采用锂离子的全固体电池的研究更加活跃。
在全固体电池的研究中,如何提高表示固体电解质锂的扩散速度的锂离子导电率是个重要课题。在最近的研究中,东京工业大学、丰田汽车公司和高能加速研究机构的研发小组发现了锂离子导电率与有机电解液相当的物质。主导研究的是东京工业大学研究生院综合理工学研究科物质电子化学专业的菅野了次教授。
菅野等人发表的是硫化物类固体电解质的一种--Li10GeP2S12。锂离子导电率在室温(27℃)下非常高,为1.2×10-2S/cm。丰田试制了采用该固体电解质的全固体电池,并于2012年10月公开。丰田证实"实现了原产品5倍"的输出密度。
在本届电池研讨会上,以丰田为首,出光兴产公司、三井金属矿业公司、村田制作所、三星横滨研究所及住友化学公司等也发表了论文。
丰田与大阪府立大学的辰巳砂研究室报告了可提高全固体电池寿命的研究成果。通过采用7Li2O·68Li2S·25P2S5,与该公司此前推进研究的75Li2S·25P2S5相比,实现了比较高的容量维持率。双方试制了采用不同固体电解质的全固体电池,以最大4V电压进行充电后,在60℃下保存了1个月,采用7Li2O·68Li2S·25P2S5的电池的反应电阻没有升高,约为当初的0.9倍,维持了86%的放电容量。而采用75Li2S·25P2S5的电池的反应电阻上升至当初的约2.0倍,放电容量维持率降到72%。
丰田称:"7 Li 2O·68Li2S·25P2S5耐水性高,活性物质和固体电解质界面能够稳定。因此可抑制硫化氢的产生量,为电池的长寿命化做出了贡献。"此次的实验是在60℃下实施的,由此可见,在高温时也能抑制电池劣化。
负极材料采用金属磷化物
固体电解质与正极材料的组合备受关注的全固体电池还提出了高容量负极候选。就金属磷化物发表演讲的是大阪府立大学和出光兴产的研发小组注。时下作为高容量负极受到关注的硅和锡虽然容量高,但与锂制成合金时体积变化较大,难以延长寿命。
而金属磷化物的特点是能形成金属微粒子和Li3P。Li3P具有矩阵构造,有望抑制锂与金属微粒子的合金化反应造成的体积变化。另外,Li3P因锂离子导电性高,仅利用活性物质即可构成负极的电极部分。
此次发表的论文中的负极材料采用了磷化锡(Sn4P3)。由该负极材料与Li2S-P2S5类固体电解质及锂铟合金正极构成的试验单元,即使负极电极中不含电解质和导电添加剂也能作为充电电池使用,具备950mAh/g的初期放电量(图10)。与采用Sn4P3、固体电解质和乙炔黑以40:60:6重量比混合的电极复合体的单元相比,电极单位重量的容量约为2倍。
此外,观察充放电前以及初次放电后和充电后的电极发现,虽然出现了100μm级的裂纹,但Sn4P3与固体电解质之间保持了出色的接触界面。大阪府立大学认为,这要得益于Li2S-P2S5类固体电解质的柔软性。
固体电解质生产氢气方法
N·R·克斯卡;R·普拉沙;C·F·高茨曼
地址:美国康涅狄格州
一种通过将压缩和加热的含氧气体混合物通入具有至少一个固体电解质氧离子迁移膜的反应器中以分离迁移的氧从而来生产合成气体和氢气的方法。有机燃料与氧气反应形成合成气体。通过至少一个固体电解质氢迁移膜将所得到的合成气体分离成氢气从而在相同或不同的分离器中分离迁移的氢气。
有机颜料 - 珠光颜料 - 陶瓷颜料 - 油画颜料 - 荧光颜料 - 纳米材料 - 二氧化钛 - 钛白粉 - 分散染料 - 活性染料 - 酸性染料中国树脂在线包括以上。
一种生产氢气和合成气体的方法,它包括以下步骤:(a)将压缩和加热的含氧气体混合物通入包括至少一个固体电解质氧离子迁移膜的氧反应器中,所说的反应器具有由所说的氧离子迁移膜隔开的第一区域和第二区域,其中所说的混合物中至少一部分氧气穿过所说的氧离子迁移膜由所说的第一区域迁移至所说的第二区域中,在所说的第二区域中形成第一渗透物气流从而与含气相有机燃料的清除气流反应,同时在所说的第一区域中形成贫氧的滞留气流;(b)将所说的清除气流通入所说的第二区域中从而与所说的迁移的氧反应在所说的第一渗透物气流中形成合成气体;(c)使所说的第一渗透物气流直接与至少一个氢迁移膜接触从而产生高纯氢渗透物和贫氢的合成气体滞留物;和(d)所说的高纯氢渗透物作为氢气流产品排出。
固体电解质其他应用
固体电解质电池还广泛用于高温物理化学研究,如用来测定化合物的生成自由焓,溶解自由焓,金属熔体中氧活度及活度影响参数等。用来测定氮、硫、氢的固体电解质电池也正在研究之中。固体电解质的研究和应用已成为60年代以来受到广泛注意并获得迅速发展的一门材料科学分支。
以固态电解质电解去离子水产在高纯氢气。产量为10Nm^3/h的实验装置,运行已经超过6000h。设计制造的一种高压型水电解槽生产高压、高纯氢而无压缩机。此高压型水电解槽已运行6000h以上。上述二种水电解槽的氢气纯度均高于99.999%(体积)。
综述了锂离子氧化物、硫化物玻璃及微晶玻璃固体电解质的研究进展。重点讨论了这些材料的电化学性能,以及离子掺杂对电化学性能的影响。探讨了锂离子玻璃和微晶玻璃固体电解质的发展及应用前景,认为其在全固态电池中的应用将随技术的发展实现商业化。
《一种高压固体电解质铝电解电容器的制造方法》提供了一种固体电解质铝电解电容器,包括铝壳及设置在所述铝壳内的芯包,所述芯包连接正负极端子,所述正负极端子外表面镀有镀银层;所述芯包外部设置有胶盖或橡胶塞。所述芯包包括阳极化成铝箔、阴极箔、介于所述阳极化成铝箔与阴极箔之间的电解纸和固体电解质,所述固体电解质可以是导电聚合物,还可以是导电聚合物和导电碳材料的复合材料。所述固体电解质通过含浸导电聚合物和/或导电碳材料分散体聚合获得。
优选但不限定,所述阳极化成铝箔采用日本蓄电器工业株式会社生产的JCC阳极箔,其型号为HGF110J16-365VF-1.33微法,宽度为17毫米,长度为491毫米;所述阴极箔采用Nanofoil阴极箔,其型号为NF3000,宽度为17毫米,长度为521毫米;所述电解纸为Asahi Kasel DS040060,其宽度为20毫米。
优选但不限定,所述固体电解质可以是导电聚合物;还可以是导电聚合物和导电碳材料的物理混合物或组合物,可通过导电聚合物和导电碳材料相互混合成固体电解质,还可通过导电聚合物与导电碳材料相互层叠成固体电解质,但不局限于此。
《一种高压固体电解质铝电解电容器的制造方法》用到的分散体A和分散体C分别为含导电聚合物的分散体和含导电碳材料的分散体;分散体B为含导电聚合物和导电碳材料的分散体。
优选但不限定,所述导电聚合物为聚苯胺和/或聚吡咯和/或聚噻吩和/或聚3,4乙烯二氧噻吩。所述导电聚合物分散体,即分散体A具体制备方法见中国专利CN101309949B,在此不再赘述,其中所述导电聚合物的浓度优选但不仅限于为2~3%(重量百分比)。
优选但不限定,所述导电碳材料为碳纳米材料或碳纳米复合材料,所述导电碳材料的尺寸优选石墨烯粒径为小于200纳米,碳纳米管长度为2~200纳米。所述碳纳米材料为碳纳米管或石墨烯;所述碳纳米复合材料中的活性材料为如下材料中的一种或多种:导电聚合物、金属氧化物、导电聚合物之间的混合物、导电聚合物和金属氧化物之间的混合物、金属氧化物之间的混合物、导电聚合物之间的复合物、导电聚合物和金属氧化物之间的复合物、金属氧化物之间的复合物。
优选但不限定,将乙醇溶液放入高速剪切机中,剪切速度为2.0万转/分钟,将石黑烯或碳纳米管或碳纳米复合材料,慢慢加入搅拌中的酒精溶液中,搅拌时间控制在30分钟以上,配制成含导电碳材料分散体,即分散体C。该含导电碳材料酒精分散液的浓度控制在0.5~5%(重量百分比)之间,还可适量加些分散剂,如十二烷基硫酸钠(SDS),十二烷基苯磺酸钠(SDBS)。
优选但不限定,将乙醇溶液放入高速剪切机中,剪切速度为2.0万转/分钟,将石黑烯或碳纳米管或碳纳米复合材料,慢慢加入搅拌中的酒精溶液中,导电碳材料浓度控制在0.5~5%(重量百分比)之间,随后加入导电聚合物,导电聚合物浓度可控制在2~3%(重量百分比)之间,搅拌时间控制在30分钟以上,配制成含导电碳材料和导电聚合物的分散体,即分散体B,还可适量加些分散剂,如十二烷基硫酸钠(SDS),十二烷基苯磺酸钠(SDBS)。
《一种高压固体电解质铝电解电容器的制造方法》提供了一种固体电解质铝电解电容器的制造方法,所述固体电解质为导电聚合物;该制造方法具体包括:
(1)阳极化成铝箔与阴极箔之间用电解纸一起卷绕成芯包,将芯包的阳极焊接于铁条上,芯包浸入化成液,根据正箔的电压施加一定电压进行化成,化成时间不小于20分钟,所述化成液可以是磷酸系化成液、硼酸系化成液或已二酸铵系化成液;
化成后将芯包浸于40~100℃纯水浸泡30~60分钟,除去化成液中残留的成份,再进行干燥。干燥分为两个步骤,第一步进行低温干燥,干燥的温度控在50~100℃,温度太低会影响干燥的效果,超过100℃干燥,液体在产品内会出现沸腾,会影响产品的特性。干燥的时间为20~100分钟,确保不能有在芯包内足够沸腾的水量。第二步干燥为110~200℃,确保残留的水份充分挥发,温度不宜太高,太高会伤害到导针出现熔锡现象,干燥时间为20~60分钟,时间太短会出现水份没有挥发干净,会影响下一次的含浸效果,以及产品的特性。时间太长,产品的阳极箔会出现劣化,影响产品的性能。
(2)将干燥后的芯包浸入分散体A中,含浸时间1~30分钟;
(3)将芯包移出分散体A,将芯包与分散体A一起抽真空至700~970帕的真空状态,再将芯包浸入分散体A中,含浸时间1~10分钟;
(4)将芯包保留在分散体A中,破真空,通入压缩空气进行加压,加压至0.1~0.6兆帕,含浸时间1~10分钟;
(5)将芯包保留在分散体A中,放气至常压状态,含浸时间1~10分钟;
(6)取出芯包,并将芯包置于50~100℃干燥20~60分钟(优选但不限定为85℃),再将芯包置于110~200℃干燥20~60分钟(优选但不限定为150℃),取出芯包;
(7)步骤(3)至(6)至少重复一次,优选但不限定为5次。所述分散体A中聚合物固含量较少,含浸一次引入的聚合物较少,会影响产品的一致性,ESR会稍高,损耗会大,同时太少,产品的寿命也不能保证,可根据实际需要进行多次重复含浸。
(8)装入铝壳,用橡胶塞封口,老化处理获得固体电解质铝电解电容器。老化的方法是将产品放入85~150℃的环境中,施加0.2倍额定电压,20~100分钟,再施加0.5倍额定电压20~100分钟,再施加0.8倍额定电压20~100分钟,再施加1.0倍额定电压20~100分钟,再施加1.2倍额定电压20~100分钟即可。
《一种高压固体电解质铝电解电容器的制造方法》还提供了另一种固体电解质铝电解电容器的制造方法,所述固体电解质为导电聚合物和导电碳材料。该制造方法具体包括:
(1)阳极化成铝箔与阴极箔之间用电解纸一起卷绕成芯包,将芯包的阳极焊接于铁条上,芯包浸入化成液,根据正箔的电压施加一定电压进行化成,化成时间不小于20分钟;化成后将芯包浸于40~100℃纯水浸泡30~60分钟,除去化成液中残留的成份,再进行50~100℃低温干燥20~100分钟,然后110~200℃高温干燥20~60分钟;
(2)将干燥后的芯包浸入分散体B中,含浸时间1~30分钟;
(3)将芯包移出分散体B,将芯包与分散体一起抽真空至700~970帕的真空状态,再将芯包浸入分散体B中,含浸时间1~10分钟;
(4)将芯包保留在分散体B中,破真空,通入压缩空气进行加压,加压至0.1~0.6兆帕,含浸时间1~10分钟;
(5)将芯包保留在分散体B中,放气至常压状态,含浸时间1~10分钟;
(6)取出芯包,并将芯包置于50~100℃干燥20~60分钟(优选但不限定为85℃),再将芯包置于110~200℃干燥20~60分钟(优选但不限定为150℃),取出芯包;
(7)步骤(3)至(6)至少重复一次,优选但不限定为5次。
(8)装入铝壳,用橡胶塞封口,老化处理获得固体电解质铝电解电容器。
《一种高压固体电解质铝电解电容器的制造方法》还提供了一种固体电解质铝电解电容器的制造方法,所述固体电解质为导电聚合物和导电碳材料。该制造方法具体包括:
(1)阳极化成铝箔与阴极箔之间用电解纸一起卷绕成芯包,将芯包的阳极焊接于铁条上,芯包浸入化成液,根据正箔的电压施加一定电压进行化成,化成时间不小于20分钟;化成后将芯包浸于40~100℃纯水浸泡30~60分钟,除去化成液中残留的成份,再进行50~100℃低温干燥20~100分钟,然后110~200℃高温干燥20~60分钟;
(2)将干燥后的芯包浸入分散体A中,含浸时间1~30分钟;
(3)将芯包移出分散体A,抽真空后再将芯包浸入分散体A,含浸时间1~10分钟;
(4)将芯包保留在分散体A中,破真空,再加压,含浸时间1~10分钟;
(5)将芯包保留在分散体A中,放气至常压,含浸时间1~10分钟;
(6)取出芯包,将芯包置于65~100℃干燥20~60分钟,再将芯包置于135~165℃干燥20~60分钟;
(7)将干燥后的芯包浸入分散体C中,含浸时间1~30分钟;
(8)取出芯包,将芯包置于65~100℃干燥20~60分钟,再将芯包置于135~165℃干燥20~60分钟;
(9)步骤(3)至(8)至少重复一次;
(10)入壳封口,老化处理获得固体电解质铝电解电容器。
《一种高压固体电解质铝电解电容器的制造方法》又提供了一种固体电解质铝电解电容器的制造方法,所述固体电解质为导电聚合物和导电碳材料。该制造方法具体包括:
(1)阳极化成铝箔与阴极箔之间用电解纸一起卷绕成芯包,将芯包的阳极焊接于铁条上,芯包浸入化成液,根据正箔的电压施加一定电压进行化成,化成时间不小于20分钟;化成后将芯包浸于40~100℃纯水浸泡30~60分钟,除去化成液中残留的成份,再进行50~100℃低温干燥20~100分钟,然后110~200℃高温干燥20~60分钟;
(2)将干燥后的芯包浸入分散体C中,含浸时间1~30分钟;
(3)取出芯包,将芯包置于65~100℃干燥20~60分钟,再将芯包置于135~165℃干燥20~60分钟;
(4)将干燥后的芯包浸入分散体A中,含浸时间1~30分钟;
(5)将芯包移出分散体A,抽真空后再将芯包浸入分散体B,含浸时间1~10分钟;
(6)将芯包保留在分散体A中,破真空,再加压,含浸时间1~10分钟;
(7)将芯包保留在分散体A中,放气至常压,含浸时间1~10分钟;
(8)取出芯包,将芯包置于65~100℃干燥20~60分钟,再将芯包置于135~165℃干燥20~60分钟;
(9)步骤(5)至(8)至少重复一次;
(10)入壳封口,老化处理获得固体电解质铝电解电容器。
《一种高压固体电解质铝电解电容器的制造方法》所涉及的真空状态及加压状态均可在一个设备上实现也可两种设备,但优选一个设备上实现,同时所述芯包和分散体同时处于真空或常压或加压状态。
所述制造方法不仅适用于高压固体电解质铝电解电容器,也适用于钽、铌或钛等的固体电解质电容器。
实施例1
该实施例所用到分散体A的导电聚合物为聚3,4乙烯二氧噻吩,其粒径约为40~80纳米,优选60纳米。电容器规格为200伏100微法,尺寸Φ16*26毫米。该电容器的制造方法为:
(1)JCC阳极箔(日本蓄电器工业株式会社生产),其型号为HGF110J16-365VF-1.33微法,宽度为17毫米,长度为491毫米;Nanofoil阴极箔,其型号为NF3000,宽度为17毫米,长度为521毫米;电解纸Asahi Kasel ADS040060,宽度为20毫米。所述阳极箔与阴极箔之间通过电解纸一起卷绕成芯包,将芯包的阳极焊接于铁条上,芯包浸入化成液,根据正箔的电压施加365伏电压在磷酸系化成液中化成20分钟;化成后将芯包浸于70℃纯水中浸泡30分钟以除去化成液中残留的成份,然后进行75℃低温干燥60分钟后再于150℃高温干燥30分钟;
(2)将干燥后的芯包浸入分散体A中,含浸时间为15分钟;
(3)将芯包移出分散体A,并抽真空至850帕的真空状态,再将芯包浸入分散体A中,含浸时间为5分钟;
(4)取出芯包,将其置于85℃低温干燥60分钟,再将芯包置于150℃高温干燥30分钟,取出芯包;
(5)步骤(3)至(4)循环5次;
(6)装入铝壳,用橡胶塞封口,老化处理获得固体电解质铝电解电容器。老化的方法是将产品放入110℃的环境中,施加0.2倍额定电压,80分钟,再施加0.5倍额定电压60分钟,再施加0.8倍额定电压40分钟,再施加1.0倍额定电压20分钟,再施加1.2倍额定电压20分钟即可。
老化结束抽取20个进行测试,结果见表1。
表1为实施例1制得的电容器的性能测试
实施例2
类似于实施例1制造20个电容器并分析,电容器规格为200伏100微法,尺寸Φ16*26毫米,不同之处在于步骤(3)变为:将芯包保留在分散体A中,通入压缩空气进行加压至0.5兆帕,含浸时间为5分钟,其他步骤及其顺序不变;其分析结果见表2。
表2为实施例2制得的电容器的性能测试
实施例3
类似于实施例1制造20个电容器并分析,电容器规格为200伏100微法,尺寸Φ16*26毫米,不同之处在于步骤(3)至步骤(4)之间增加了常压含浸步骤,该常压含浸步骤具体为:将芯包保留在分散体A中,破真空至常压状态,含浸时间为5分钟;其他步骤不变,其分析结果见表3。
表3为实施例3制得的电容器的性能测试
实施例4
类似于实施例2制造20个电容器并分析,电容器规格为200伏100微法,尺寸Φ16*26毫米,不同之处在于步骤(3)至步骤(4)之间增加了常压含浸步骤,该常压含浸步骤具体为:将芯包保留在分散体A中,放气至常压状态,含浸时间为5分钟;其他步骤不变,其分析结果见表4。
表4为实施例4制得的电容器的性能测试
实施例5
该电容器的制造方法为:
(1)JCC阳极箔,其型号为HGF110J16-365VF-1.33微法,宽度为17毫米,长度为491毫米;Nanofoil阴极箔,其型号为NF3000,宽度为17毫米,长度为521毫米;电解纸Asahi Kasel ADS040060,宽度为20毫米,作成电容器规格为200伏100微法,尺寸Φ16*26毫米。所述阳极箔与阴极箔之间通过电解纸一起卷绕成芯包,将芯包的阳极焊接于铁条上,芯包浸入化成液,根据正箔的电压施加365V电压在磷酸系化成液中化成20分钟;化成后将芯包浸于70℃纯水中浸泡30分钟以除去化成液中残留的成份,然后进行75℃低温干燥60分钟后再于150℃高温干燥30分钟;
(2)将干燥后的芯包浸入分散体A中,含浸时间为15分钟;
(3)将芯包移出分散体A,并抽真空至850帕的真空状态,再将芯包浸入分散体A中,含浸时间为5分钟;
(4)将芯包保留在分散体A中,破真空,并通入压缩空气进行加压至0.5兆帕,含浸时间为5分钟;
(5)将芯包保留在分散体A中,放气至常压状态,含浸时间为5分钟;
(6)取出芯包,将其置于85℃低温干燥60分钟,再将芯包置于150℃高温干燥30分钟,取出芯包;
(7)步骤(3)至(6)循环5次;
(8)装入铝壳,用橡胶塞封口,老化处理获得固体电解质铝电解电容器。老化的方法是将产品放入110℃的环境中,施加0.2倍额定电压,80分钟,再施加0.5倍额定电压60分钟,再施加0.8倍额定电压40分钟,再施加1.0倍额定电压20分钟,再施加1.2倍额定电压20分钟即可。
老化结束抽取20个进行测试,结果见表5。
表5为实施例5制得的电容器的性能测试
实施例6
该电容器的制造方法为:
(1)JCC阳极箔,其型号为110LJB22B-33VF-58.4微法,宽度为17毫米,长度为391毫米;Nanofoil阴极箔,其型号为NF3000,宽度为17毫米,长度为421毫米;电解纸NKK,RTZ3040,宽度为20毫米,作成电容器规格为16伏3300微法,尺寸Φ16*26毫米。所述阳极箔与阴极箔之间通过电解纸一起卷绕成芯包,将芯包的阳极焊接于铁条上,芯包浸入化成液,根据正箔的电压施加365V电压在磷酸系化成液中化成20分钟;化成后将芯包浸于70°C纯水中浸泡30分钟以除去化成液中残留的成份,然后进行75℃低温干燥60分钟后再于150℃高温干燥30分钟;
(2)将干燥后的芯包浸入分散体A中,含浸时间为15分钟;
(3)将芯包移出分散体A,并抽真空至850帕的真空状态,再将芯包浸入分散体A中,含浸时间为5分钟;取出芯包,将其置于85℃低温干燥60分钟;
(4)将芯包浸在分散体A中,破真空,并通入压缩空气进行加压至0.5兆帕,含浸时间为5分钟;取出芯包,将其置于85℃低温干燥60分钟;
(5)将芯包浸在分散体A中,放气至常压状态,含浸时间为5分钟;取出芯包,将其置于85℃低温干燥60分钟,再将芯包置于150℃高温干燥30分钟,取出芯包;
(6)步骤(3)至(5)循环5次;
(7)装入铝壳,用橡胶塞封口,老化处理获得固体电解质铝电解电容器。老化的方法是将产品放入110℃的环境中,施加0.2倍额定电压,80分钟,再施加0.5倍额定电压60分钟,再施加0.8倍额定电压40分钟,再施加1.0倍额定电压20分钟,再施加1.2倍额定电压20分钟即可。
老化结束抽取20个进行测试,结果见表6。
表6为实施例6制得的电容器的性能测试
实施例7
类似于实施例5制造20个电容器并分析,不同之处在于该实施例采用JCC阳极箔(型号为HGF110J16-365VF-1.33微法,宽度为7.5毫米,长度为192毫米)、Nanofoil阴极箔(型号为NF3000宽度为7.5毫米,长度为212毫米)且阳极箔与阴极箔之间通过宽度为15毫米型号为Asahi Kasel ADS040060的电解纸一起卷绕成芯包,作成规格为200伏15微法,尺寸为Φ10*12毫米的电容器,其分析结果见表7。
表7为实施例7制得的电容器的性能测试
实施例8
类似于实施例5制造20个电容器并分析,不同之处在于采用JCC阳极箔(型号为HGF110J16-365VF-1.33微法,宽度为13毫米,长度为302毫米)、Nanofoil阴极箔(型号为NF3000宽度为13毫米,长度为327毫米),且阳极箔与阴极箔之间通过宽度为15毫米型号为Asahi Kasel ADS040060的电解纸一起卷绕成芯包,作成规格200伏47微法,尺寸为Φ13*20毫米的电容器,其分析结果见表8。
表8为实施例8制得的电容器的性能测试
实施例9
类似于实施例5制造20个电容器并分析,作成电容器规格为200伏100微法,尺寸Φ16*26毫米,不同之处在于该实施例所用到的导电聚合物粒径约为30~50纳米,其分析结果见表9。
表9为实施例9制得的电容器的性能测试
实施例10
类似于实施例5制造20个电容器并分析,作成电容器规格为200伏100微法,尺寸Φ16*26毫米,不同之处在于该实施例所用到的导电聚合物粒径约为70~90纳米,其分析结果见表10。
表10为实施例10制得的电容器的性能测试
实施例11
该实施例所用到的固体电解质为导电聚合物和导电碳材料的混合物,其中导电聚合物为聚3,4乙烯二氧噻吩,其粒径约为40~80纳米,优选60纳米;导电碳材料为平均粒径为150纳米的石墨烯;并将聚3,4乙烯二氧噻吩与石墨烯按重量百分比为1:1制备成分散体B,其中石墨烯和聚3,4乙烯二氧噻吩的浓度分别为重量百分比3%和3%。该电容器的制造方法为:
(1)JCC阳极箔,其型号为HGF110J16-365VF-1.33微法,宽度为17毫米,长度为491毫米;Nanofoil阴极箔,其型号为NF3000,宽度为17毫米,长度为521毫米;电解纸Asahi Kasel ADS040060,宽度为20毫米,作成电容器规格为200伏100微法,尺寸Φ16*26毫米。所述阳极箔与阴极箔之间通过电解纸一起卷绕成芯包,将芯包的阳极焊接于铁条上,芯包浸入化成液,根据正箔的电压施加365V电压在磷酸系化成液中化成20分钟;化成后将芯包浸于40℃纯水中浸泡30分钟以除去化成液中残留的成份,然后进行50℃低温干燥20分钟后再于160℃高温干燥20分钟;
(2)将干燥后的芯包浸入分散体B中,含浸时间为1分钟;
(3)将芯包移出分散体B,并抽真空至700帕的真空状态,再将芯包浸入分散体B中,含浸时间为5分钟;
(4)将芯包保留在分散体B中,破真空,并通入压缩空气进行加压至0.4兆帕,含浸时间为5分钟;
(5)将芯包保留在分散体B中,放气至常压状态,含浸时间为5分钟;
(6)取出芯包,将其置于65℃低温干燥60分钟,再将芯包置于150℃高温干燥40分钟,取出芯包;
(7)步骤(3)至(6)循环8次;
(8)装入铝壳,用橡胶塞封口,老化处理获得固体电解质铝电解电容器。
老化结束抽取20个进行测试,结果见表11。
表11为实施例1制得的电容器的性能测试
实施例12
该实施例所用到的导电聚合物为聚3,4乙烯二氧噻吩,其粒径约为40~80纳米,优选60纳米;导电碳材料为平均长度为150纳米的碳纳米管;并分别制备分散体A和分散体C,其中碳纳米管和聚3,4乙烯二氧噻吩的浓度分别为重量百分比5%和2%。该电容器的制造方法为:
(1)JCC阳极箔,其型号为HGF110J16-365VF-1.33微法,宽度为17毫米,长度为491毫米;Nanofoil阴极箔,其型号为NF3000,宽度为17毫米,长度为521毫米;电解纸Asahi Kasel ADS040060,宽度为20毫米,作成电容器规格为200伏100微法,尺寸Φ16*26毫米。所述阳极箔与阴极箔之间通过电解纸一起卷绕成芯包,将芯包的阳极焊接于铁条上,芯包浸入化成液,根据正箔的电压施加365V电压在磷酸系化成液中化成20分钟;化成后将芯包浸于40℃纯水中浸泡30分钟以除去化成液中残留的成份,然后进行50℃低温干燥20分钟后再于160℃高温干燥20分钟;
(2)将干燥后的芯包浸入分散体A中,含浸时间为15分钟;
(3)将芯包移出分散体A,并抽真空至850帕的真空状态,再将芯包浸入分散体B中,含浸时间为10分钟;
(4)将芯包保留在分散体A中,破真空,并通入压缩空气进行加压至0.1兆帕,含浸时间为1分钟;
(5)将芯包保留在分散体A中,放气至常压状态,含浸时间为10分钟;取出芯包,将其置于85℃低温干燥40分钟,再将芯包置于110℃高温干燥60分钟,取出芯包;
(6)将干燥后的芯包浸入分散体C中,含浸时间为5分钟;取出芯包,将其置于85℃低温干燥20分钟,再将芯包置于165℃高温干燥20分钟,取出芯包;
(7)步骤(3)至(8)循环5次;
(8)装入铝壳,用橡胶塞封口,老化处理获得固体电解质铝电解电容器。
老化结束抽取20个进行测试,结果见表1。
表12为实施例12制得的电容器的性能测试
实施例13
该实施例所用到的导电聚合物为聚3,4乙烯二氧噻吩,其粒径约为40~80纳米,优选60纳米;导电碳材料为平均尺寸为100纳米的碳纳米管;并分别制备分散体A和分散体C,其中碳纳米管和聚3,4乙烯二氧噻吩的浓度分别为重量百分比0.5%和2.5%。该电容器的制造方法为:
(1)JCC阳极箔,其型号为HGF110J16-365VF-1.33微法,宽度为17毫米,长度为491毫米;Nanofoil阴极箔,其型号为NF3000,宽度为17毫米,长度为521毫米;电解纸Asahi Kasel ADS040060,宽度为20毫米,作成电容器规格为200伏100微法,尺寸Φ16*26毫米。所述阳极箔与阴极箔之间通过电解纸一起卷绕成芯包,将芯包的阳极焊接于铁条上,芯包浸入化成液,根据正箔的电压施加365V电压在磷酸系化成液中化成20分钟;化成后将芯包浸于40℃纯水中浸泡30分钟以除去化成液中残留的成份,然后进行50℃低温干燥20分钟后再于160℃高温干燥20分钟;
(2)将干燥后的芯包浸入分散体C中,含浸时间为30分钟;
(3)取出芯包,将其置于85℃低温干燥60分钟,再将芯包置于150℃高温干燥30分钟;
(4)将干燥后的芯包浸入分散体A中,含浸时间为15分钟;
(5)将芯包移出分散体A,并抽真空至970帕的真空状态,再将芯包浸入分散体B中,含浸时间为8分钟;
(6)将芯包保留在分散体A中,破真空,并通入压缩空气进行加压至0.6兆帕,含浸时间为10分钟;
(7)将芯包保留在分散体A中,放气至常压状态,含浸时间为1分钟;
(8)取出芯包,将其置于100℃低温干燥20分钟,再将芯包置于135℃高温干燥60分钟;
(9)步骤(4)至(8)循环5次;
(10)装入铝壳,用橡胶塞封口,老化处理获得固体电解质铝电解电容器。
老化结束抽取20个进行测试,结果见表13。
表13为实施例13制得的电容器的性能测试
对比例1
类似于实施例1作成电容器规格为200伏100微法,尺寸Φ16*26毫米的20个电容器并分析,不同之处在于去除步骤(3),且步骤(2)至(4)循环5次,其分析结果见表14。
表14为对比例1制得的电容器的性能测试
对比例2
类似于实施例1作成电容器规格为200伏100微法,尺寸Φ16*26毫米的20个电容器并分析,不同之处在于去除步骤(3)和(5),且步骤(2)含浸时间为30分钟,其分析结果见表15。
表15为对比例2制得的电容器的性能测试
对比例3
该电容器的规格为16伏3300微法18*36.5毫米,其具体的制造方法为:
(1)阳极化成铝箔与阴极箔之间用电解纸一起卷绕成芯包;
(2)焊接在铁条上,浸入化成液中,使化成液刚好淹没芯包,施加32V的化成电压,同时对二个阳极化成铝箔进行化成修复处理,处理时间为10分钟;
(3)对芯包进行碳化处理,温度300±10℃,碳化时间20分钟;
(4)重复上述步骤(2)和(3)4次;
(5)将芯包分别放入单体中进行含浸,含浸时,使芯包的至少2/3处于含浸液面以下,含浸时间为6分钟,完毕后,去溶剂;
(6)将芯包放入氧化剂中进行含浸,含浸时,使芯包的全部处于含浸液面以下,含浸方法是先将内部为常压的芯包含浸于氧化剂中2分钟,再脱离氧化剂,抽真空至真空度90千帕以下,保持2分钟,时间到后放气于常压,并通入压缩空气至压力为3atm,含浸于氧化剂中5分钟,时间到完成含浸;
(7)对含浸好的芯包进行两段式聚合:首先,低温聚合,聚合温度50±10℃,聚合时间200±10分钟;其次,高温聚合,聚合温度150±10℃,聚合时间100±10分钟;
(8)老化处理和测试分选:先向电容器的一极分别施以额定电压的0.5倍、1倍、1.2倍的电压进行老化处理,然后再向电容器的另一极分别施以额定电压的0.5倍、1倍、1.2倍的电压进行老化处理。
老化结束抽取20个进行测试,其CAP(微法)平均为3312;DF(%)平均为3.3;ESR(毫欧)/100千赫兹平均为6.3;LC(微安)/1分钟平均为153。
该对比例采用是单体与氧化剂采用的溶剂型溶剂,在含浸过程中,由于采用的溶剂表面张力小,能够渗透到化成箔的微孔中,在微孔中形成导电聚合物,微孔中的氧化膜缺陷较多,导电聚合物的存在,这些缺陷会产生较大的漏电流,并且导电聚合物的修复能力较差,故大漏电产生后,就可能出现短路,因此很难提高产品的电压。
对比例4
该电容器的制造方法中所用到的阳极箔、阴极箔及电解纸和规格与实施例5相同,作成电容器规格为200伏100微法,尺寸Φ16*26毫米,其具体的制造方法为:
(1)阳极化成铝箔与阴极箔之间用电解纸一起卷绕成芯包;
(2)将芯包置于300℃下进行碳化处理,除去灰份;再将芯包放在7%已二酸铵的水溶液中,施加9V电压进行15分钟修复损坏的氧化膜;
(3)将氧化剂对甲基苯磺酸铁配成40~60%的醇溶液,将步骤(2)处理后的芯包浸入上述醇溶液3~6分钟,取出芯包,置于60~70℃干燥除去醇溶液;
(4)将单体3,4乙烯二氧噻吩配成40~55%的醇溶液,将含浸氧化剂并烘干后的芯包含浸于单体的醇溶液中2~4分钟,取出芯包,置于60~70℃干燥除去醇溶液;升温至110~120℃使之产生聚合反应,形成导电高分子导电层;
(5)将芯包装上封口橡胶,放入铝壳中,施加电压老化100分钟,获得固体电解质铝电解电容器。
老化结束抽取20个进行测试,结果见表16。
表16为对比例4制得的电容器的性能测试
备注:由于对比例4中的方法耐压不足,不能测试进行老化处理,故漏电流没办法测试。
根据实施例和对比例,《一种高压固体电解质铝电解电容器的制造方法》采用常压、真空、加压多种压力环境结合的条件下将芯包浸入分散体A时,分散体A中的电解质能够更充分在箔的表面生成稳定的导电高分子层,提高电容器电性能;同时,聚合物分散体A作为固体电解质,能够有效提高高压固体电解质铝电解电容器的耐电压值;同时,采用多次重复含浸步骤,热处理后除去芯包中含浸溶剂,有利于下次对含浸液的吸收,可以获得更低ESR的高压固体电解质铝电解电容器,提高引出率,降低损耗同时可以提高产品的一致性;特别是(真空含浸 低温干燥)→(加压含浸 低温干燥)→(常压含浸 低温干燥 高温干燥)的循环含浸过程,更有利于下次对含浸液中导电聚合物的吸收,可以获得更低ESR,使芯包浸得更透更充分,获得稳定的导电高分子层。
制造电容器时采用真空状态含浸,其主要作用是将电解纸中、箔的表面以及箔微孔中的气体抽去,为分散体A的吸附腾出了空间,可以吸附更多的分散体A。若箔表面若有气泡,则会阻止分散体A的吸附,影响干燥后分散体A在箔表面形成膜的完整性,进而影响产品的性能。同时真空可以带走分散体A中的气泡,提高了分散体A的渗透效果。
而真空含浸后进入常压状态,主要是借助气体的压力,将浸在分散体A的芯包在一个大气压的条件下进一步的渗透,加压的原理是一样的,就是相对于真空有更大的压力差,使浸在分散体A中的芯包含浸得更加透彻,吸附更多的分散体A。
真空、常压和加压三种不同压力状态的结合可以在不同状态下有不同的压力,一步步加大压力,使芯包浸得更透更充分。
对于大尺寸如Φ16*26的电容器,由于芯包较大,分散体A经过的路径更长,更不宜渗透,单是真空和常压结合或者加压和常压结合很难实现芯包含浸效果,对其性能也造成一定的影响。
实施例11、实施例12与实施例13是在导电聚合物电解质中增加了导电能力更强的碳材料,来增加导电聚合物的导电性能。固体电解质的导电性能增强后,会直接降低产品的串联等效电阻(ESR),同时产品的损耗也会稍有降低。不同的加入方式会对产品有微小的差别,比如浓度,含浸的次序产品会有微小的差别,这些可能通过多次试验来完成优化。从实施例5中可以看出,因为没有碳材料增加导电性能,故没加导电碳材料的相比其串联等效电阻会增大,损耗也会有稍微的增加。
为了能够更好的实现固体电解质铝电解电容器的最佳性能,《一种高压固体电解质铝电解电容器的制造方法》还进行了工艺优化改进,以下结合正交优化实验进行说明。所述正交优化实验为7因素三水平,进行18次实验,老化结束后分别抽取20个进行测试,测试结果为其平均值,具体情况见表17。
表17为正交优化实验的因素及水平和性能测试
这个正交试验不是完整意义上所有的条件的正交,只是选了7个影响因素比较大的做了个研究,实际生产工艺会由这个规律性的结果,与实际的生产以及生产效率结合起来,做一个性能与效率的综合,确定生产的工艺。
从这个正交试验来看:真空度不是越高越好,太低可能会导致芯包中的气体排不干净,会导致分散体A吸附不能完善;真空度太高,会造成分散体A中的水分散失,造成粘度增大,也会影响到实际的含浸效果。真空含浸时间在含浸中也有同产的问题,时间太短,含浸不充分,增长时间能够提高含浸效时,但超过一定的时间,提高的效果不明显,同时也会因时间太长,造成分散体A粘度大,造成下一个周期含浸不效果。
加压含浸的压力,对含浸效果在明显改善,加压含浸时间增长,含浸的效时也会改善。但可以实施的范围内,考虑到安全性,没有再增大压力。
低温干燥的目的,是让分散体中的水份慢慢排出芯包,温度过高至水沸腾的状态,会影响分散体在箔表面的聚合物膜的形成,温度过低会影响排出速度。时间增加会改善水份排出的效果,但时间太长不会明显增加效果并致使生产效率降低。高温干燥目的是进一步除去芯包中的水份,温度选择受高备的限制,高温干燥时间也要选择合适的时间,太长没有效果,同时会对产品作一些伤害。
因为分散体的固含量较低,选用多次含浸的方式,增加聚合物存有量,从试验结果来看,增加到一定的次数后,性能提高效果就不明显。实验例中只是针对现在分散体的固含量进行的试验,固含量的变化,含浸次数会作变化。固含量越高,含浸次数可相应的减少。
氧化锆固体电解质在实际中的应用,主要就是利用它的离子导电特性。但在高温或低氧分压的情况下,电解质晶体正常结点上的氧(O0)具有变成氧分子向气相逸出的趋势,并在电解质中留下氧离子空位(V0。。)和自由电子(e),固体电解质从而表现出较为明显的电子电导,即:O0=1/2O2 V0。。 2e
如果电子电导大于固体电解质总电导的1%,则此类固体电解质不能用于热力学参数的准确测量。固体透氧膜(SOM)法用于金属氧化物直接制备金属所用透氧膜材料主要为氧化钇稳定的氧化锆(YSZ)固体电解质。其高温电子电导数据对于研究SOM法反应机理及反应速率等参数有着重要的意义,因此,获得高温下YSZ电子电导率的数据就显得尤为重要。传统固体电解质的电子电导测试方法一般采用电子导电特征氧分压来表征电子电导,如抽氧测定法,其装置复杂且实验误差较难控制,因此不适用于诸如YSZ类电子电导较低的材料。常用的Wagner直流极化法可以得到较为精确的电子电导率,其难点在于离子阻塞电极的制备。本实验就是基于Wagner直流极化法,通过一种新方法在YSZ陶瓷材料上制备离子阻塞电极,对其电子电导进行了直接测量,并研究了影响电子电导率的因素。
(1)测试原理
Wagner直流极化法的原理采用不对称电池设计。一端为可逆电极,另一端是离子阻塞电极。在该电池上施加低于电解质分解电压的电势时,阻塞电极界面上残余氧离子流通过电解质迁移至正极,但因阻塞电极切断了氧离子源而导致电解质中离子流很快下降。
当电位梯度产生的离子流和因浓度梯度引起的化学扩散离子流相等时,离子电流降为0,此时总电流只由电子或电子空穴产生。
(2)阻塞电极
根据Wagner直流极化法的原理,本实验所选择的是对电子导通而对氧离子传导阻塞的离子阻塞电极。研究 曾尝试用金属铜作为离子阻塞电极,但因金属铜的熔点温度所限,使得该法只能用来测量材料的低温电子电导。现有方法在金属与陶瓷结合时,通常采用喷涂和涂覆的方式,因此阻塞电极实际上难以真正与陶瓷基体紧密结合,漏氧问题较难解决,从而导致测试误差偏大。
本研究基于已有电子电导测量的低温局限性,提出了采用金属镍作为阻塞电极的研究思路。金属镍的熔点很高(1453℃),所以理论上可用于高温下固体电解质的电子电导测量;而针对金属与陶瓷基体结合不够紧密导致的漏氧问题,拟采用化学镀结合电镀的工艺。化学镀的粗化过程中,浓酸对固体电解质陶瓷材料表面进行了刻蚀,金属镍粒在沉积的过程中渗入陶瓷表层,这样不仅增加了金属镍与陶瓷材料结合表面积,还加强了两者间的结合力;在此基础上再结合电镀的工艺,最终可获得致密的金属镍层。
电子的迁移数取决于该反应式中的氧空位数量。氧空位数量低,则反应易发生(向右进行);反之则不易发生。由此可以看出,高温条件下氧化锆试样的电子迁移数量与材料中的自由氧空位数量呈反比关系。在相同实验条件下,3YSZ形成的自由氧空位数量较低,该反应较易发生,导致试样中较大的电子迁移,而9YSZ为全稳定状态,氧空位数量相对较高,因此其电子迁移数较小,15YSZ中,越来越多的Y3 取代Zr4 ,这样使得原先处于次近邻位置的氧空位变成最近邻而发生复合,实际上却减少了自由氧空位的数量,因此上式反应较易发生,使得电子迁移数反而大于9YSZ。
使用化学镀结合电镀的方法可以利用金属镍作为阻塞电极,从而获得较高温度下YSZ材料的电子电导率值。基于Wagner直流极化法原理测试得到了不同掺杂的YSZ材料电子电导率值,实验中测得的试样电子电导率与温度关系为:
3YSZ:lnσT=3.18-6795/T
5YSZ:lnσT=2.28-6790/T
9YSZ:lnσT=0.42-7449/T
15YSZ:lnσT=1.49-7226/T2100433B
《一种高压固体电解质铝电解电容器的制造方法》涉及电解电容器的制备技术领域,具体涉及一种高压固体电解质铝电解电容器的制造方法。