中文名 | 过电位 | 外文名 | overpotential |
---|---|---|---|
定 义 | 电极的电位差值 | 特 点 | 过电位随着电流密度升高而提高 |
又 称 | 超电势 | 直接相关 | 电池的电压效率 |
下面列出了超电势的四种极性。
电解池的阳极更积极,使用比热力学所需要的更多的能量。
电解池的阴极更负,比热力学需要更多的能量。
原电池的阳极负电性较小,所提供的能量比热力学可能的要少。
原电池的阴极不太正,比热力学可能性少。
如Tafel方程所述,过电势随着电流密度(或速率)的增加而增加。电化学反应是两个半电池和多个基本步骤的组合。每一步都与多种形式的超电势相关联。整体超电势是许多个人损失的总和。
电压效率描述了通过超电势损失的能量的部分。对于电解池,这是电池的热力学势除以电池的实验潜能换算成百分位数的比率。对于原电池来说,电池的实验电位除以电池热力学电位转换成百分位数的比例。电压效率不应与法拉第效率混淆。这两个术语都是指电化学系统可以失去能量的模式。能量可以表示为电位,电流和时间的乘积(焦耳=伏特×安培×秒)。电压效率描述了通过超电势潜在项的损失。法拉第效率描述了通过错误定向的电子在当前的损失。
过电位可以分成许多不同的子类,这些子类都没有很好的定义。例如,“极化过电位”可以指在循环伏安法的正向和反向峰中发现的电极极化和滞后现象。缺乏严格定义的一个可能的原因是很难确定从特定来源得到的测量的过电压有多少。超电位可分为三类:活化,浓度和电阻。
电极的材料 |
氢 |
氧 |
氯 |
---|---|---|---|
铂(镀铂) |
-0.07 V |
0.77 V |
0.08 V |
钯 |
-0.07 V |
0.93伏 |
|
金 |
-0.09 V |
1.02 V |
|
铁 |
-0.15 V |
0.75 V |
|
白金(闪亮) |
-0.16V |
0.95 V |
0.10 V |
银 |
-0.22伏 |
0.91 V |
|
镍 |
-0.28伏 |
0.56 V |
|
石墨 |
-0.62伏 |
0.95 V |
0.12 V |
铅 |
-0.71伏 |
0.81 V |
|
锌 |
-0.77伏 |
||
汞 |
-0.85伏 |
激活过电位是产生取决于氧化还原事件的激活能量的电流所需的平衡值之上的电位差。尽管模棱两可,“激活过电位”通常专指将电子从电极转移到阳极电解液所需的激活能。这种过电位也可以称为“电子转移过电位”,是“极化过电位”的一个组成部分,是循环伏安法中观察到的现象,部分由科特雷尔方程描述 。
反应过电位
反应过电位是特别涉及电子转移之前的化学反应的激活过电位。反应过电位可以通过使用电催化剂来减少或消除。电化学反应速率和相关的电流密度取决于电催化剂的动力学和底物浓度。
大部分电化学所共有的铂电极在许多反应中电催化参与。例如,氢在水溶液中在标准氢电极的铂表面被氧化并且质子被容易地还原。用电催化惰性的玻碳电极代替铂电极,产生具有大的超电势的不可逆还原和氧化峰。
浓度过电位跨越涉及电极表面电荷载流子耗尽的各种现象。气泡过电位是浓度超电势的一种特定形式,其中电荷载流子的浓度由于形成物理气泡而被耗尽。“扩散过电位”可以指由慢扩散速率产生的浓度超电势以及“极化过电位”,其过电位主要来源于激活过电位,但峰电流受到被分析物扩散的限制。
电位差是由体溶液和电极表面之间电荷载体浓度的差异引起的。当电化学反应足够迅速以降低电荷载体的表面浓度低于本体溶液的表面浓度时发生。反应速率取决于电荷载体到达电极表面的能力。
泡沫过电位
气泡过电位是一种特定形式的浓度超电势,是由于在阳极或阴极上气体的演变。这减少了电流的有效面积并增加了局部电流密度。一个例子是氯化钠水溶液的电解- 虽然氧气应该根据其电位在阳极产生,但气泡过电压会导致产生氯气,这使得通过电解容易工业生产氯和氢氧化钠。
电阻超电势是与电池设计有关的电阻。这些包括发生在电极表面和界面(如电解质膜)上的“结过电位”。它们还可以包括电解质扩散,表面极化(电容)和其他反电动势源 。
在电化学中,过电位是半反应的热力学确定的还原电位与实验观察到的氧化还原反应的电位之间的电位差(电压)。该术语与电池的电压效率直接相关。在电解池中,超电势的存在意味着电池需要比热力学预期驱动反应更多的能量。在原电池中,过电位的存在意味着比热力学更少的能量被回收预测。在每种情况下,多余的/缺失的能量都会作为热量流失。过电位的数量是特定于每个单元设计的,并且在单元和操作条件之间变化,即使对于相同的反应。过电位通过测量实现给定电流密度(通常小)的电位来实验确定。
析氢过电位:实际的电极反应在进行的时候,会发生阴极电位比理论值低,阳极电位比理论值高的情况,这就叫做过电位.如果阴极析出的是氢气,就叫析氢过电位,析氧过电位也一样.过电位是由于电极的极化而产生的,就是...
答:属于列项不清。
有地磅间MEB端子板、配电柜、电源进线管、预埋件
1、 变电站等电位接地的原理是什么? 答:等电位连接 (Equipotential bonding,bonding) :将分开的装置、诸导电物体用等电位连 接导体或电涌保护器连接起来以减小雷电流在它们之间产生的电位差。 在工程实践中,特别是自动化仪表工程,系统接地不但要防雷,而且要对意外的线路过 载、短路进行有效的安全保护, 更重要的是通过等电位连接来抑制电位差达到消除电磁干扰 的目的。这里的等电位连接导体,通常指工程现场俗称的 “接地网 ”。 等电位防雷器采用的元件为压敏电阻或放电管, 利用其电阻非线性原理, 以防止传输频率较 高并且容易受干扰的电子设备在接地时受到各种杂波干扰。 同时防止电子设备在接地时受到 地电位反击。 该防雷器在平时处于高阻状态, 与地网或等电位连接的其它设备和线路处于断 开状态, 一旦某局部出现高电位时它将在纳秒级迅速导通, 使通过它连接的各部分形成等电 位。等电
技 术 交 底 记 录 2007年 7月 17日 鲁建 5-1 工程名称 安莉芳 (山东 )工业园一期餐厅 分部工程 电气工程 分项工程名称:等电位联结 内容 :一、机具 电焊机 钢锯 钢丝刷 扳手 毛刷 卷尺 接地电阻测试仪等 二、材料 等电位箱 热镀锌圆钢扁钢 电焊条 沥青漆防腐漆 预埋盒等 三、施工工艺 1. 按设计要求确定总等电位箱、局部等电位箱坐标位置。 2. 按设计要求将等电位联结导体走向及安装方法划线,标定清楚。 3. 将等电位箱洞口预留好,同时考虑二次配管或配扁钢或圆钢的间 隙 ,待二次配管配线完成后 ,箱体可用稀释混凝土或砂浆 ,将墙体湿 润后固定牢固 . 4. 等电位箱之间以及各种管道、 器具、门窗、金属吊顶均应用导体连 接 ,导体规格符合设计要求 . 5. 总等电位联结如采用基础钢筋、等自然接地体 ,经实测接地电阻满 足电气装置的接地要求时 ,可不需另做人工接地
钝化电位与佛莱德电位不同,前者是金属从活态转变到钝态时的特征电位,而后者是金属从钝态转变成活态时的特征电位,但两者有时很接近。
过补偿的危害概括来讲两句话,一是性质严重,二是涉及范围大。
归纳分析它会造成以下几种情况:
1.容易形成谐振现象。
2.抬高网络电压。
3.增加有功损耗。
(1)无功倒送和顺送一样,会产生电压损失ΔU和有功功率损耗ΔP。
(2)过补偿多余无功功率ΔQc产生有功损耗。
对物体静电位(也就是物体的对地电压)的测量是最基本和最常用的测量。这首先是因为静电位的高低反映了物体的带电程度.是衡量静电危害的重要方面。许多生产工艺都规定了不致引起静电危害的静电电位的临界值,也就是说,利用静电位可直接判断其静电安全性。有些情况下,静电位虽不足以作为判断静电危害的标准,但作为相对比较仍是有效的。其次,静电位的测量不论是在实验室条件还是在生产现场,都比其他参数的测量容易实现,所用仪表的构造也比较简单。
在静电电位的测量中,有两种类型的方法和仪表。一类称接触式测量。是将仪表与带电体直接连接而测量的,相应的仪表叫接触式静电电位计,常用于对导体电位的测量。接触式仪表在测量电容较小的带电体时引入的测量误差较大;在进行远距离测量时,连接电缆的电容也会使测量精度降低;特别是该种仪表一般都需要工频电源,因而不适于在易燃爆场所使用。
还有一类测量叫非接触测量,所使用的仪表叫非接触式仪表。这种仪表测量时不与带电体(导体或绝缘体)连接,而是将探头接近带电体到规定的距离,由于静电感应的原理,探头上感应出一定的静电位,然后由仪表读数。在许多工业部门,都广泛应用非接触式仪表。
接触式静电电位计
典型的接触式仪表是QV系列静电电压表,结构原理如下图1所示。
图1中A、B是两个固定且相互绝缘的金属盒,C是悬于金属丝上可以转动的金属片。当测量探头接触带电体时,电极以A、B之间就形成电场,金属片C由于静电感应而带电,并在A、B间受到电场力作用而偏转,从而带动悬丝及其上面的小镜一起偏转,偏转力矩与被测电压的平方成正比。当偏转力矩与悬丝的反作用力矩相平衡时,偏转角度即表示被测电压的高低,角度可由同定在悬丝上的小镜通过光标显示出来。
接触式仪表测量的等效电路如上右所示。其中,C0是带电体的对地电容,C和R分别是仪表的输入电容和输入电阻。当把仪表与带电体进行接触测量时,带电体的对地电容增大为C0 C,因而接上仪表后在C上测量到的静电压U并不等于接上仪表前带电体的实际静电压U0,二者之间的关系为
接触式仪表主要用于导体静电位的测量,如人体电位的测量;也常与法拉第筒配合测量绝缘体的带电量。
非接触式仪表
非接触式仪表的测量原理是基于静电感应或空气电离。前者是将探极置于带电体附近,直接测量其表面电应(实质上是对带电体表面电场的测量);后者是利用放射性同位素电离空气,电阻分压,测量带电体的对地电位。相应地,非接触式仪表可分为静电感应型和电离型(又称集电型)两大类。在静电感应型中,又根据对探极感应到的信号进行放大和调制的方式分为直接感应式、旋叶交流放大式和振动电容交流放大式等几种。以下介绍一种非接触式静电电位计——直接感应式仪表。
这种仪表测量静电位采用电容分压原理,如图所示。
图2中A为待测物体,T为测量探头(极板),R和C分别是仪表的输入电阻和输入电容,C1是极板的对地电容,C0是极板与待测物体间的电容;C0与C和C1构成一电容分压器。设U0是待测物对地的实际静电位,U是极板上感应到的静电位,则由电容分压原理、并考虑到极板上的部分感应电荷经由R向大地泄放的规律可得
①当探头位置一定时,C0/(C0 C)可视作常量,因而可通过检测极板的感应电位U而求出待测物的实际静电位U0。而且,当改变极板到物体的距离时,就相当于改变了常数C0/(C0 C),即改变了量程。所以,在非接触仪表中,一股都是通过改变极板(探头)到待测物体的距离来实现量程的转换。
②由于电容C上的感应电荷通过仪表输入电阻R泄漏,致使其上的静电位U随时间衰减而产生测量误差;测量过程越长、误差越大。为减小测量误差,须使R和C充分大.以增大放电时间常数。但Cc过大时将使U减小.反而使测量发生困难。为便于测量,一般是将测量的电位U作为信号加以直流放大后再进行显示。
③由于C0在测量时不能每次都保持固定不变,因而也是直接感应法测量静电位的主要误差来源之一。为此,在测量时探头与待测物体间的距离应尽可能的保持稳定。
直接感应式仪表的优点是结构简单,体积和重量可以做得很小,便于携带,测量方便。缺点是稳定性较差,且因采用直流差动式放大电路,导致零点飘移严重,不适于作连续测量,精度也较差。目前,国内工业生产中使用的直感式仪表有JD-B型电位计、V0-1型静电检测器、BYJ-3型静电伏特计等。
利用上面介绍的接触式或非接触式仪表即可对物体的静电位进行测量。根据被测对象和测量场合的不同,可分别采用直接测量和探极测量的方法。
对带电的导体或人体可直接用接触式仪表与之连接,测量其静电位。对加工物料、设备工装、人体的裸露部位,以及可以插入探头且与探头之间无带电体或绝缘体的部位,均可用非接触式仪表直接测量其静电位。
在密封的容器、输送液体或粉体的管道内,以及不便插入探头、或无法避免探头与待测部位间存在带电体或绝缘体的场合,都不能用仪表直接测量。此时,可将被绝缘的探极设法伸到待测部位,再用引线接到容器或管道外部的集电板上,然后用接触式仪表或非接触式仪丧测量集电扳的电位,从而间接测出待测部位的静电位。这种方法就叫探极测量法。
在用探极法进行测量时,应注意以下几个问题。首先应保证整个测量装置有足够高的绝缘性,要求装置的放电时间常数τ>180s,即达到静电绝缘的规定;与此同时,装置的对地电容应尽量小;只有这样,才能提高测量的准确度,减小误差。其次,所采用的探极应尽量减小对待测电场的影响,不使待测电场发生明显畸变,为此宜采用针状、棒状或球状的金属探极。此外,当探极上有来自待测带电体的传导电流时,所检测到的电位要比实际电位低,例如,在带电液体或堆积的带电粉尘内部放置探极时,传导电流就会从带电体流向探极,传导电流的大小取决于带电体的电量、电导率、探极的尺寸、形状等因素。