书 名 | 固体氧化物燃料电池理论分析与结构优化设计 | 作 者 | 孔为、潘泽华、韩雷涛 |
---|---|---|---|
出版社 | 化学工业出版社 | 出版时间 | 2018年8月 |
页 数 | 147 页 | 开 本 | 16 开 |
装 帧 | 平装 | ISBN | 978-7-122-31985-2 |
第1章绪论1
1.1燃料电池简介1
1.2固体氧化物燃料电池优势2
1.3固体氧化物燃料电池的开路电压2
1.4固体氧化物燃料电池的三种极化损失4
1.4.1活化极化5
1.4.2欧姆极化6
1.4.3浓差极化6
1.5固体氧化物燃料电池的效率7
第2章具有菲克定律形式的尘气模型11
2.1引言11
2.2理论12
2.3模型验证14
2.3.1模型描述14
2.3.2数值模拟方法和模型参数15
2.4DGMFM准确性分析16
2.4.1基本模型参数时DGMFM准确性分析16
2.4.2不同阳极结构时DGMFM准确性分析17
2.4.3不同操作条件时DGMFM准确性分析17
2.4.4DGMFM高度准确的原因20
2.5小结21
参考文献21
第3章传统电极曲率模型23
3.1传质理论23
3.1.1菲克模型23
3.1.2麦克斯韦-斯特藩模型24
3.1.3尘气模型24
3.1.4菲克形式尘气模型25
3.2曲率综述25
3.3曲率的计算27
3.3.13D立方体堆积27
3.3.2扩散模拟27
3.3.3模型验证与计算结果分析28
3.4曲率的推导31
3.4.1理论推导31
3.4.2模型验证及计算结果分析33
3.5小结34
参考文献34
第4章静电纺丝电极三相线模型37
4.1电极TPB模型简介37
4.1.1传统电极37
4.1.2浸渍电极38
4.2静电纺丝电极TPB模型39
4.3静电纺丝电极TPB长度计算40
4.4逾渗率42
4.5TPB长度43
4.6小结44
参考文献45
第5章阳极支撑与阴极支撑SOFC性能对比分析47
5.1引言47
5.2模型48
5.2.1控制方程48
5.2.2边界条件50
5.3模型参数52
5.4计算结果分析52
5.4.1气体浓度分布53
5.4.2电势分布54
5.4.3温度分布54
5.4.4肋宽度的影响54
5.4.5接触电阻和单元宽度的影响55
5.5小结56
参考文献57
第6章双电极支撑SOFC性能分析58
6.1引言58
6.2模型59
6.2.1物理模型59
6.2.2导电过程的控制方程59
6.2.3质量输运过程的控制方程60
6.2.4边界条件60
6.2.5模型参数及验证62
6.3计算结果分析63
6.3.1物理量分布对比63
6.3.2不同参数的影响65
6.4小结67
参考文献67
第7章电解质支撑SOFC电极厚度分析69
7.1引言69
7.2物理模型70
7.3数学模型70
7.3.1物质传输控制方程70
7.3.2导电控制方程71
7.4计算结果分析71
7.4.1气体浓度分布71
7.4.2电极集流层厚度优化71
7.5小结74
参考文献74
第8章阳极支撑SOFC肋尺寸分析76
8.1引言76
8.2理论方法77
8.2.1物理模型77
8.2.2气体在多孔介质中的输运控制方程78
8.2.3导电过程的控制方程79
8.2.4边界条件(BCs)80
8.2.5数值方法81
8.2.6模型参数和数值验证81
8.3结果与讨论83
8.3.1电池性能与肋宽度的关系83
8.3.2阳极肋宽度对电池性能的影响85
8.3.3阴极肋宽度对电池性能的影响87
8.3.4最优肋宽度的计算公式89
8.4小结91
参考文献91
第9章阴极支撑SOFC肋优化93
9.1引言93
9.2模型94
9.2.1几何模型94
9.2.2传质过程模拟95
9.2.3导电过程模拟97
9.2.4边界条件99
9.2.5数值求解99
9.2.6数值验证100
9.3结果与讨论101
9.3.1肋宽度对电池性能影响101
9.3.2最优肋宽度表达式102
9.4小结104
参考文献104
第10章SOFC肋尺寸选取107
10.1引言107
10.2模型108
10.3计算结果分析108
10.4小结113
参考文献114
第11章SOFC新型连接体设计与优化115
11.1引言115
11.2模型115
11.2.1几何模型115
11.2.2气体输运方程117
11.2.3导电方程117
11.2.4Butler-Volmer方程118
11.2.5边界设置118
11.3不同连接体设计性能对比119
11.3.1阳极浓度过电势分布119
11.3.2阴极电势分布119
11.3.3电导率的影响121
11.3.4孔隙率的影响122
11.3.5单元宽度和Vop的影响123
11.4交叉形连接体结构优化125
11.4.1阴极连接体多参数优化125
11.4.2阳极连接体多参数优化128
11.5小结131
参考文献131
第12章SOFC多场模型的开发133
12.1SOFC多场模型概述133
12.2模型134
12.2.1几何模型134
12.2.2电荷守恒方程135
12.2.3动量守恒方程136
12.2.4质量守恒方程136
12.2.5能量守恒方程137
12.2.6边界条件138
12.2.7多场模型开发139
12.3计算结果分析140
12.4新型电堆设计142
12.5小结145
参考文献146 2100433B
与火力发电原理不同,燃料电池是直接将燃料的化学能转变为电能,因此燃料电池的效率比火力发电的效率高得多。燃料电池作为继水电、火电、核电之后的第四代新型发电技术,得到了世界各国的重视。与其他类型的燃料电池相比, 固体氧化物燃料电池(SOFC)具有燃料灵活、全固态、不需要昂贵的催化剂、高温余热等突出的优势。《固体氧化物燃料电池理论分析与结构优化设计》在固体氧化物燃料电池气体传质模型和电极孔隙结构的重构、曲率的推导、纺丝电极的三相线模型构建、支撑结构对性能的影响、双电极支撑SOFC提出及分析、电极厚度的优化、肋尺寸的影响及优化、新型连接体及电堆的设计、SOFC多场模型的开发等方面进行了重点介绍。
本书适合从事新能源、能源化学,特别是燃料电池领域的研究生和科研人员使用,也可供能源行业相关工程师和技术人员参考。
SOFC与第一代燃料电池(磷酸型燃料电池,简称PAFC)、第二代燃料电池(熔融碳酸盐燃料电池,简称MCFC)相比它有如下优点:(1)较高的电流密度和功率密度;(2)阳、阴极极化可忽略,彼化损失集中在电...
根据我的了解,固体氧化物燃料电池的价格有以下几种情况: 1.青岛天尧实业有限公司,报价是755元。 2.上海依夫实业有限公司,报价是300元。 3.子美国际贸易(上海)有限公司,报价是345元。 价格...
固体氧化物燃料电池是由美国西屋(Westinghouse)公司研制开发的.它以固体氧化锆-氧化钇为电解质,这种固体电解质在高温下允许氧离子(O2-)在其间通过。
固体氧化物燃料电池封接玻璃在初期必须具备一定的流动性以便有效形成封接,进而保持足够的机械强度。它的热膨胀系数必须与燃料电池的其它部件相匹配,还需要具有化学稳定性。通过对研制的80多个逆性硅酸盐玻璃成分的分析,获得了成分-性能的一些规律:B2O3能够降低玻璃的软化温度和玻璃转变温度;ZnO通过拓宽玻璃转变温度和结晶温度之间的温度范围而改善封接性能,如Zn/Si比为0.7的成分可以获得230℃的温度范围;逆性玻璃的热膨胀系数取决于网络配体的平均势场强度,如加入BaO因为其较小的势场强度而提高玻璃的热膨胀系数,而加入势场强度较大的ZnO则呈现相反趋势。
介绍了燃料电池的基本工作原理、特点和种类 ,以及一种固体氧化物燃料电池在作者所在大学建筑冷热电联产项目中的应用。
现代结构理论分析与简化计算
定 价:¥68.00库 存:有货,可送至全国
开 本:16开
I S B N:9787030293435
批准号 |
59505010 |
项目名称 |
杆系结构优化设计的小波理论算法研究 |
项目类别 |
青年科学基金项目 |
申请代码 |
E0506 |
项目负责人 |
刘亮 |
负责人职称 |
讲师 |
依托单位 |
西安电子科技大学 |
研究期限 |
1996-01-01 至 1998-12-31 |
支持经费 |
6(万元) |
内容介绍
《时空变形分析与预报的理论和方法》系统深入地讨论了顾及空间和时间关联信息的动态变形分析与预报的理论、方法及实际应用。全书共分五章。主要内容包括变形分析研究现状及进展;变形分析与预报方法综述,叙述和分析了现有国内外变形数据处理的理论和方法,概括性地评价和指出了各种方法的特点及适用场合;DDS法用于动态变形分析与预报,比较了时间序列分析中的BOX与DDS法,系统而详细地讨论了一种动态变形分析的时间序列分析方法及其建模步骤,提出了描述变形体稳定性及稳定性判据的依据;讨论了多因子关联分析及动态预报模型的建立,包括用基于灰关联分析的系统状态模型来建立变形因果关系方程和将等维新息和等维灰数递补相结合的动态预测法来进行变形成因分析和预测的新思想、新方法在第五章空间动态变形模型及其预报方法中,作者提出了用灰关联聚类分析方法来描述空间点之间的关系,推出了多点的时空非线性动态模型,使局部单点的变形分析转向空间多点的整体分析,该内容属于当前正在开发研究的新领域。
结合应用、面向应用、介绍基本理论和方法、开拓新的研究方向是《时空变形分析与预报的理论和方法》的基本立足点。在附录中还详细给出了各种算法的程序。
《时空变形分析与预报的理论和方法》可供从事变形监测和工程测量等方面的科技人员参考使用,也可作为高等院校相关专业的教师和研究生的参考书。
2100433B