共模电容就是为了改善模块的共模表现而放置的电容,一般是跨接在模块的原副边。模块的EMI主要是差模和共模影响,所以为了模块的EMI(电磁干扰)能够通过指标,让模块的干扰不去干扰到输入电源和输出用电器我们需要改善共模和差模表现。
共模电容就是为了改善共模表现得,他会把共模噪声旁路掉(因为共模噪声很高频,电容对高频来说是短路所以噪声从该电容走) 噪声被旁路掉那么其他用电器就少受到干扰进而共模表现就会更好。
多块电容的集合,为了提高电容耐压与容量值,比如法拉级电容,高压电容器。
在通常使用的家用电器中,电容器主要有三个作用:1 在需要直流电源的电路中,对交流电源整流后用电容器滤波,得到平滑的直流电。如不用这个电容器,交流电源经整流后的脉动直流电流不能经滤波成为平滑的...
用在单相电机的电容一般有两种:一种是我们较常见的启动电容,顾名思义,由于单相电机形成的磁场不是旋转的,在启动时就有了电机转向的不确定性或难以启动。通过电容的移相作用,使电机形成旋转的磁场,从而电机顺利...
一、电容的主要参数: 1、 电压 1) 额定电压:两端可以持续施加的电压,一般为直流电压,通常用 VDC。而专用于 交流电的则为交流有效值电压,通常为 VAC。 电容器的交直流额定电压换算关系 直流额定电压 VR/VDC 50 63 100 250 400 630 1000 交流额定电压 VR/VAC 30 40 63 160 200 220 250 2) 浪涌电压:电解电容特有的电压参数,是短时间可以承受的过电压,为额定电压的 1.15 倍。 3) 瞬时过电压:是铝电解电容特有电压参数,为可以瞬时承受的过电压,这个浪涌电 压约为额定电压的 1.3 倍,是铝电解电容的击穿电压。 4) 介电强度:电容额定电压低于电容中介质的击穿电压。一般为额定电压的 1.5~2.5 倍。如:铝电解电容的击穿电压约为额定电压的 1.3 倍;其它介质则通常为 1.75~2 倍以上。 5) 试验电压:薄膜电容
在把电容装入你的应用装置之前请仔细阅读下面的安装与维护说明。 关于本手册 : 这篇手册介绍了典型的用法。在安装前,请参考我们的产品使用说明书,或者要求我 们对你的特殊要求作出认可。 为了你的安全!不遵守手册指南可能会导致操作失败,爆炸和起火。 如果你有疑问,请与当地的 EPCOS销售单位或发行人联系,取得帮助。 安装与操作时的总体注意事项: ——保证电容外壳有良好的有效的接地。 ——在系统中,与任何故障元件 /区域要有绝缘措施。 ——搬运电容时要小心,由于放电元件故障,即使断开后,电容也有可能会有电。 ——遵守有关的工程实践要求。 ——不要使用 HRC 熔丝来来断电容(否则会有可能引起电弧导致危险) 。 ——一旦施加了电压,同样要考虑电容接线端子、连接母线和电缆,还有任何其他的 与其相连的元件。因为它们是带电的! 存放和操作条件 不要在腐蚀性的空气中,特别是氯化物气体、硫化物气体、酸性、碱
采用铁氧体磁心,双线并绕。 低差模噪声信号抑制干扰源,在高速信号中难以变形。 杂讯抑制对策佳,高共模噪音抑制和低差模噪声信号抑制。
共模滤波器设计相对较简单,包括共模电容,不平衡变压器或共模电感。共模电容将两个输入线的共模电流旁路到大地,共模电感呈现一个平衡阻抗,也就是说,电源线和地线中阻抗相等,这个阻抗对共模噪声呈现阻抗特性。
电源EMI噪声滤波器是一种无源低通滤波器,它无衰减地将交流电传输到电源,而大大衰减随交流电传入的EMI噪声;同时又能有效地抑制电源设备产生的EMI噪声,阻止它们进入交流电网干扰其它电子设备。
单相交流电网噪声滤波器的基本结构如图2所示。它是由集中参数元件组成的四端无源网络,主要使用的元件是共模电感线圈L1、L2,差模电感L3、L4,以及共模电容CY1、CY2和差模电容器CX。若将此滤波器网络放在电源的输入端,则L1与CY1及L2与CY2分别构成交流进线上两对独立端口之间的低通滤波器,可衰减交流进线上存在的共模干扰噪声,阻止它们进入电源设备。共模电感线圈用来衰减交流进线上的共模噪声,其中L1和L2一般是在闭合磁路的铁氧体磁芯上同向卷绕相同匝数,接入电路后在L1、L2两个线圈内交流电流产生的磁通相互抵消,不致使磁芯引起磁通饱和,又使这两个线圈的电感值在共模状态下较大,且保持不变。
差模电感线圈L3、L4与差模电容器CX构成交流进线独立端口间的一个低通滤波器,用来抑制交流进线上的差模干扰噪声,防止电源设备受其干扰。
图2所示的电源噪声滤波器是无源网络,它具有双向抑制性能。将它插入在交流电网与电源之间,相当于这二者的EMI噪声之间加上一个阻断屏障,这样一个简单的无源滤波器起到了双向抑制噪声的作用,从而在各种电子设备中获得了广泛应用。
EMI滤波器的使用正在成为阻碍电力电子系统功率密度提高的重要因素。本研究从磁电集成的观点出发,提出变换器中功率耦合电感与EMI滤波器一体化设计思想:采用集成的方式缩短元件间的互联、应用磁路的观点来保证集成单元实现功率耦合电感的性能、采用耦合有损传输线滤波器实现中、高频EMI滤波器功能,利用传输线型变压器来实现EMI滤波器的端口阻抗匹配;同时辅以共模电容补偿技术,让采用一体化设计的变换器满足EMC指标。本项目中有关磁电集成结构及其优化研究、拆分绕组的优化函数模型研究、铁氧体磁芯中耦合有损传输线模型研究、传输线型变压器的阻抗变换性能研究、共模电容匹配研究以及基板埋容技术研究都将为磁电集成提供理论指导,为电力电子集成领域开拓新的方向。