中文名 | 工程应力 | 外文名 | Engineering stress |
---|---|---|---|
特 性 | 抵抗变形的内力 | 所属学科 | 材料力学 |
正应力与剪应力
同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。极限应力值要通过材料的力学试验来测定。将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。
有些材料在工作时,其所受的外力不随时间而变化,这时其内部的应力大小不变,称为静应力;还有一些材料,其所受的外力随时间呈周期性变化,这时内部的应力也随时间呈周期性变化,称为交变应力。材料在交变应力作用下发生的破坏称为疲劳破坏。通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。
物体受力产生变形时,体内各点处变形程度一般并不相同。用以描述一点处变形的程度的力学量是该点的应变。为此可在该点处到一单元体,比较变形前后单元体大小和形状的变化 。
当应力超过σs后,试样发生明显而均匀的塑性变形,若使试样的应变增大,则必须增加应力值,这种随着塑性变形的增大,塑性变形抗力不断增加的现象称为加工硬化或形变强化。当应力达到σb时试样的均匀变形阶段即告终止,此最大应力σb称为材料的强度极限或抗拉强度,它表示材料对最大均匀塑性变形的抗力。
在σb值之后,试样开始发生不均匀塑性变形并形成缩颈,应力下降,最后应力达到σk时试样断裂。σk为材料的条件断裂强度,它表示材料对塑性的极限抗力。
物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,单位面积上的内力称为应力。应力是矢量,沿截面法向的分量称为正应力,沿切向的分量称为切应力。
物体中一点在所有可能方向上的应力称为该点的应力状态。但过一点可作无数个平面,是否要用无数个平面上的应力才能描述点的应力状态呢?通过下面的分析可知,只需用过一点的任意一组相互垂直的三个平面上的应力就可代表点的应力状态,而其它截面上的应力都可用这组应力及其与需考察的截面的方位关系来表示。
各位大侠,请问一下,在已经通过单轴拉伸、压缩和平面剪切实验,获得工程应力、应变数据点后怎样用ansys软
大神,问一下,你做那个平面剪切实验时怎样获得的转角切应变的数据?通过DIC系统,还是怎么的?
预应力是为了改善结构服役表现,在施工期间给结构预先施加的压应力。结构服役期间预加压应力可全部或部分抵消荷载导致的拉应力,避免结构破坏,常用于混凝土结构。在工程结构构件承受外荷载之前,对受拉模块中的钢筋...
预应力是为了改善结构服役表现,在施工期间给结构预先施加的压应力。结构服役期间预加压应力可全部或部分抵消荷载导致的拉应力,避免结构破坏,常用于混凝土结构。在工程结构构件承受外荷载之前,对受拉模块中的钢筋...
这种应力-应变曲线通常称为工程应力-应变曲线,它与载荷-变形曲线相似,只是坐标不同。从此曲线上,可以看出低碳钢的变形过程有如下特点:
当应力低于σe时,应力与试样的应变成正比,应力去除,变形消失,即试样处于弹性变形阶段,σe为材料的弹性极限,它表示材料保持完全弹性变形的最大应力。
当应力超过σe后,应力与应变之间的直线关系被破坏,并出现屈服平台或屈服齿。如果卸载,试样的变形只能部分恢复,而保留一部分残余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。σs称为材料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限。
应力仪或者应变仪是来测定物体由于内应力的仪器。一般通过采集应变片的信号,而转化为电信号进行分析和测量。
方法是:将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。很多金属在机械性地伸长或缩短时其电阻会随之变化。应变片就是应用这个原理,通过测量电阻的变化而对应变进行测定。一般应变片的敏感栅使用的是铜铬合金,其电阻变化率为常数,与应变成正比例关系。
通过惠斯通电桥,便可以将这种电阻的比例关系转化为电压。然后不同的仪器,可以将这种电压的变化转化成可以测量的数据。
对于应力仪或者应变仪,关键的指标有: 测试精度,采样速度,测试可以支持的通道数,动态范围,支持的应变片型号等。并且,应力仪所配套的软件也至关重要,需要能够实时显示,实时分析,实时记录等各种功能,高端的软件还具有各种信号处理能力 。
另外,有一些仪器是通过光谱,膜片等原理设计的。2100433B
上述应力-应变曲线中的应力和应变是以试样的初始尺寸进行计算的,事实上,在拉伸过程中试样的尺寸是在不断变化的,此时的真实应力S应该是瞬时载荷(P)除以试样的瞬时截面积(A),即:S=P/A;同样,真实应变e应该是瞬时伸长量除以瞬时长度de=dL/L。下图是真应力-真应变曲线,它不像应力-应变曲线那样在载荷达到最大值后转而下降,而是继续上升直至断裂,这说明金属在塑性变形过程中不断地发生加工硬化,从而外加应力必须不断增高,才能使变形继续进行,即使在出现缩颈之后,缩颈处的真实应力仍在升高,这就排除了应力-应变曲线中应力下降的假象。
参考资料:
1.崔忠圻《金属学与热处理》北京:机械工业出版
一般的应力控制之循环实验通常是采“荷重控制”或称“标称应力控制”,亦即忽略在循环期间截面积的变化而施加循环载重。在“非对称应力循环”(应力均值不为零)的实验下,若因截面积变化而使其实际的应力略有改变时,当此变化量远小于“应力均值”时,则此时可忽略因截面积变化所导致的应力差异。但在“对称应力循环”(应力均值为零)的实验,或是应力均值较小的“非对称应力循环”实验下,截面积的变化会使“真实应力(tmestress)的均值往拉伸向偏移,如Hauptand Schinke曾提及,以不锈钢在标称应力控制下,以210MPa及230MPa应力振幅、均值为-10MPa(压缩向)循环实验,发现会得到往拉伸向累积之棘齿行为,并认为是由于截面积变化影响拉、压的“真实应力”所导致的结果。
20世纪60、70年代修建的众多桥梁使用这么多年以后,多数都不同程度地出现了各种各样的病害特征。为延长其使用寿命,对病害要进行相应的处理,采取加固措施。结合嘉陵江大桥加固工程的建设实际,介绍了在桥梁加固施工过程中应力监测工作的必要性、内容和方法以及监测成果的分析。
由于负荷值的变化随时可以读出,但瞬间截面积很难直接读出。因此,一般只能得到工程应力,即由负荷和原始截面积计算所得。真应力是要通过一些假设,才由工程应力的测量后计算得到。
对于真应变,人们把整个拉伸过程划分成无数多个时间段,对于任何一个微小的时间段,试件的瞬时长度为
试件从
材料在塑性变形中的体积认为是不变的,即
所以真应力
由于
所以
根据上式就可以由工程应力应变关系得到真应力应变关系,继而画出真应力应变曲线。
工程上为了方便,以试样的原始截面积和长度作为计算标准,据此做出的应力-应变关系的曲线。
《冶金学名词》第二版。