抑制电子设备 EMI 噪音。 DVC,STB 的 IEEE 1394 线路。 液晶显示面板,低压微分信号。 个人电脑及外围设备的 USB线路。
采用铁氧体磁心,双线并绕。 低差模噪声信号抑制干扰源,在高速信号中难以变形。 杂讯抑制对策佳,高共模噪音抑制和低差模噪声信号抑制。
共模滤波器设计相对较简单,包括共模电容,不平衡变压器或共模电感。共模电容将两个输入线的共模电流旁路到大地,共模电感呈现一个平衡阻抗,也就是说,电源线和地线中阻抗相等,这个阻抗对共模噪声呈现阻抗特性。
共模滤波器作用
是消除开关电源特有的"开关干扰",以保证电视机自身和电网中的其它设备免除干扰。共模滤波电路如图所示。
从电气工程上,所有的元件可以归纳为三类最基本的元件,即电阻,电感和电容.电阻的阻值与交流电的频率无关.电感的阻值(称为感抗)Xl=2πfL,即与交流电的频率成正比.频率越高,感抗越大.电容元件则与电感...
这个必须接合图纸来说明较清楚些,简单地说吧就是利用电容,电感量的不一样,所对不同频率产生的阻抗不一样.阻抗大的被阻挡,阻抗小的被通过.同时也可以利用电容,电感对某个频段产生偕振,使之通过或被阻挡.这就...
模拟的一阶滤波器带外衰减是20db/十倍频,而二阶则是40db/十倍频,阶数越高带外衰减越快。可以粗略地认为阶数越高滤波效果越好,但有时可能需要折中考虑相移,稳定性等因素。
国产彩色电视机中共模滤波器外形及电原理图如图所示。
共模滤波器设计
选择共模滤波器的元件值不需要很复杂的过程。可使用标准过滤器排列来取得相对简单和直观的设计过程,虽然这些排列可能经过修改以使用预先定义好的元件值。
线路滤波器防止在电子设备和AC线路之间产生过多噪音;一般而言,重点还是对AC线路的保护。在AC线路(通过全阻抗匹配电路)和(噪音)电源转换器之间使用共模滤波器的情况。共模噪音(噪音在接地的两条线路上同时产生)的运动方向是从负载端进入滤波器,这样两个线路共有的噪音得到很大衰减。最后,滤波器加到AC线路(通过全阻抗匹配电路)上的输出小到可以忽略不计。
设计共模滤波器必须设计两个相同的差动滤波器。其中每个滤波器分别对应两极的线路, 而每一边的感应器分别耦合一个磁芯。
对于差动输入电流(从A到B的输入是沿L1,从B到A是沿L2),两个感应器之间的耦合净磁通量为0。
任何差动信号引起的自感应是两个滤波器耦合不好引起的。滤波器作为独立元件工作,其漏感对差动信号做出响应:漏感衰减了差动信号。
当感应器L1和L2收到接地的同一电极的相同信号,它们都会在共用的磁芯中产生一个非零的净通量。两个感应器于是作为独立元件工作,其共同的自感应对共同的差动信号做出响应:共同的自感应衰减了共同的差动信号。
一阶滤波器设计
最简单和最廉价的滤波器就是一阶滤波器。这类滤波器使用一个电抗性元件来存储一定频段的能量,与此同时,其并不把能量传送到负载。就低通共模滤波器而言,采用的电抗性元件是共模扼流圈。
为一阶低通滤波器选择扼流圈时应多加注意,因为选取的值远大于典型的或最小的电感值会限制扼流圈的有效衰减频段。
二阶滤波器设计
二阶滤波器采用两个电抗性元件, 这种结构安排较一阶滤波器而言,具有两个优点:a) 理想地,二阶滤波器在截止频率之上提供每倍频程12dB 的衰减(是一阶滤波器的四倍);b) 在电感谐振频点之上可以具有更大的衰减。
为获得截止频点(Wc)恰当的响应,二阶滤波器的设计要求比一阶滤波器更为严格。但是,其对更高的频率上的关注度有所降低。 对于高阶滤波器而言,其设计过程所需要关注的关键因素之一是拐角频率的衰减特性。在二阶滤波器的设计中,阻尼因子通常用希腊字母ζ表示)既描述了拐角频率处的增益也描述了滤波器的时域响应,是表达上述关键因素特性的重要表征特征。
三阶滤波器设计
三阶滤波器理想地在截止频率处产生每倍频程18dB 的衰减(如果三个拐角频率并不是同步则会有多个截止频率点),这是这种高阶滤波器最明显的特征。
三阶滤波器最主要的缺点在于成本高,因为其采用了三个电抗性的元件。高于三阶以上的滤波器通常费用太昂贵,故在实际生产中一般不予考虑。
TDK(日本东京电气化学工业公司)株式会社近日宣布研发出了世界上最小共模滤波器,该滤波器的三围只有0.45mm×0.30mm×0.23mm这比现有0806过滤器(国际电工委员会标准)的小了超过75%。
共模电感测量诊断
电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。
漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即使没有磁芯,其所有磁通都集中在线圈"芯"内。但是,如果环形线圈没有绕满一周,或者绕制不紧密,那么磁通 就会从芯中泄漏出来。这种效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通"泄漏",这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。
如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出:
式中,是芯体中的磁通变化量,Ldm是测得的差模电感,是差模峰值电流,n为共模线圈的匝数。
由于可以通过控制B总,使之小于B饱和,从而防止芯体发生磁饱和现象,有以下法则:
式中,是差模峰值电流,Bmax是磁通量的最大偏离,n是线圈的匝数,A是环形线圈的横截面积。Ldm是线圈的差模电感。
共模扼流圈的差模电感可以按如下方法测得:将其一引腿两端短接,然后测量另外两腿间的电感,其示值即为共模扼流圈的差模电感。
滤波器设计时,假定共模与差模这两部分是彼此独立的。然而,这两部分并非真正独立,因为共模扼流圈可以提供相当大的差模电感。这部分差模电感可由分立的差模电感来模拟。
为了利用差模电感,在滤波器的设计过程中,共模与差模不应同时进行,而应该按照一定的顺序来做。首先,应该测量共模噪声并将其滤除掉。采用差模抑制网络(Differential Mode Rejection Network),可以将差模成分消除,因此就可以直接测量共模噪声了。如果设计的共模滤波器要同时使差模噪声不超过允许范围,那么就应测量共模与差模的混合噪声。因为已知共模成分在噪声容限以下,因此超标的仅是差模成分,可用共模滤波器的差模漏感来衰减。对于低功率电源系统,共模扼流圈的差模电感足以解决差模辐射问题,因为差模辐射的源阻抗较小,因此只有极少量的电感是有效的。
尽管少量的差模电感非常有用,但太大的差模电感可以使扼流圈发生磁饱和。可根据公式(2)作简单计算来避免磁饱和现象的发生。
测量共模线圈磁芯(整体或部分)的饱和特性通常是很困难的。通过简单的试验可以看出共模滤波器的衰减在多大程度上受由60Hz编置电流引起的电感减小量的影响。进行此项测试需要一台示波器和一个差模抑制网络(DMRN)。首先,用示波器来监测线电压。按如下方法从示波器的A通道输入信号,将示波器的时间基准置为2ms/div,然后将触发信号加在A通道上,在交流电压达到峰值时会有线电流产生,此时滤波器效能的降级是意料中的事情。差模抑制网络(DMRN)的输入端连接到LISN,输出端用50的阻抗进行匹配且与示波器的B通道相连。当共模扼流圈工作在线性区时,在输入电流波动期间,B通道监测到的发射增加值不超过6-10dB。图1为此测试在示波器上显示的结果,上面的曲线为共模发射;下面的曲线为线电压。在线电压峰值期间,桥式整流器正向导通且传送充电电流。
图1 示波器上显示的由于60Hz充电电流引起的共模扼流圈的降级
如果共模扼流圈达到饱和,那么在输入浪涌增加时,发射将会增加。如果共模扼流圈达到强饱和,发射强度与不加滤波器时的情况是一样的,也就是说很容易达到40dB以上。
这些实验数据可用其他方法来解释。发射最小值(线电流为0的时候)是滤波器无偏置电流时表现出来的效果。峰值发射与最小发射的比率,即降级因子,用来衡量线电流偏移量对滤波器实际效果的影响。降级因子较大表明共模扼流圈磁芯完全没有得到恰当的使用,较好的滤波器的"固有降级因子"差不多在2-4之间。它是由两种现象产生的:第一,60Hz充电电流引起的电感减小(如上所述);第二,桥式整流器的正向及反向导通。共模发射的等效电路由一个阻抗约为200pF的电压源、二极管阻抗和LISN的共模阻抗组成,如图2所示。当桥式整流器正向偏置时,在源阻抗、25和LISN共模阻抗之间会产生分压现象。当桥整流器反向偏置时,在源阻抗、整流桥反偏电容、LISN之间产生分压现象。当二极管整流桥反向偏置电容较小时,对共模滤除有一定效果。当整流桥正向偏置时则对共模滤除没有影响。
图2 共模辐射等效电路
由于产生了分压,固有降级因子的预期值为2左右。实际值的变化相当大,主要取决于源阻抗和二极管整流桥反向偏置电容的实际大小。在Flugan发明的一个电路中,正是应用这个原理来减小镇流器的传导发射的。
如果测试人员相当谨慎,那么就可以采取类似MIL-STD-461中的测试装置来检测共模扼流圈的饱和特性。这个原理的应用如下:测试时采用两只电流探头,低频探头监测线电流,高频探头仅测量共模发射电流。线电流监视器作为触发源。不过,使用电流探头的一个隐患是差模电流衰减是管芯内绕组导线对称性的函数。如果精心合理安排绕线布局的话,30dB左右的差模电流衰减是能够得到的。即使达到这个衰减值,测得的差模分量也可能超过预期的共模分量值。可用如下两项技术来解决这一问题:第一,将一只6kHz转折频率的高阶高通滤波器与示波器串联(注意应用50的终端阻抗进行匹配)。第二,在每只10μF的电容与电源总线之间接入一根导线。为了测量共模辐射,电流探头应夹在这些载有极小线电流的导线近旁。
为了快速且浅显地介绍共模扼流圈的作用,可考虑采用以下论述:"共模扼流圈管芯两侧的磁场相互抵消,因此不存在磁通使管芯饱和。"尽管这种论述对共模扼流圈作用的直觉叙述具体化了,但实质上并非如此。
* 假设电流密度J产生磁场H,那么就可得出结论:附近的另一个电流不会抵消或阻止磁场或者是由此而产生的电场。
* 同样一个相邻的电流可以导致磁场路径的改变。
* 在环形共模电感的特殊场合中,每条引线中的差模电流密度可假定是相等的,且方向相反。所以由此而产生的磁场必定在环形磁芯周边上的总和为0,而在其外部则不为0!
磁芯的作用就好像它在线圈绕组的间隙处裂为两半时所表现出来的效果一样。每个绕组在环形线圈一半的区域内产生磁场,意指穿过空气的磁场必定会形成自封闭回路,图3是环形磁芯和差模电流磁路的示意图。
图3 共模环形磁芯中差模磁路示意图
共模扼流圈能发挥一定的作用是由于μcm比μdm大好几个数量级的缘故,因为共模电流通常很小,可以通过使L/D保持在较低值来获得更小的μdm。
为了得到共模电感,同时又要使差模电感最小,最好是采用横截面积较大的磁芯绕制成多匝线圈。采用较大的螺旋管磁芯,也并非一定要这样的磁芯,可在共模扼流圈内并入有效的差模电感。因为差模磁通是远离磁芯(环形结构)的,因此可能会产生极强的辐射。尤其是滤波器安装在PCB板上的情况下,这种辐射可以耦合到电源线,使传导发射增强。当磁性材料被带到场内时(例如,环形磁芯放置在铁壳里),差模磁导率就可能会显著地增加,从而由于差模电流而导致磁芯的饱和。
为了实现有效的滤波器设计,磁通离开磁芯引起的辐射问题必须予以解决。其办法有是将差模磁通限制在磁性结构物体中(壶形铁芯),或者是为差模磁通(E形铁芯)提供一条高磁导率的路径。
如果共模扼流圈采用壶形铁芯结构,那么就需两个绕轴。图4示意出了壶形铁芯窗格里的两组线圈及其产生的磁通路径。同时也表明了同一结构条件下的差模磁通路径。
图4 共模壶形铁芯电感中的磁路
注意第一组,所有的磁通均在铁芯内部。正是由于这种结构,从铁芯外表面到其中心垂直隔板间的空气隙长度决定了纯磁阻的大小。使用磁导率大于10的垫圈后,就可以通过改变垫圈(其值等于空气隙长度)内外半径的大小来控制纯磁阻。壶形铁芯的差模电感、共模扼流圈可按如下公式计算:
具体尺寸如图5所示。
图5 壶形铁芯计算差模电感时的具体尺寸
减小差模路径上的磁阻将使差模电感增加。使用这种共模扼流圈的最显著的优点就在于壶形铁芯具有固有的"自屏蔽"特性。
另外还有一种共模扼流圈,它比环形磁芯线圈更易绕制,但比壶形铁芯线圈的辐射更厉害,E形铁芯线圈如图6所示。图中表明,共模磁通将外部引线上的两组线圈都联系在一起了。为了获得较高的磁导率,在外部引线上应没有空气隙。另一方面,差模磁通将外部引线和中心引线联系起来。差模路径中的磁导率可以通过使中心引线彼此隔开来取得,中心引线是产生辐射的主要区域。
1.贴片线圈的用途:广泛使用在共模滤波器、多频变压器、阻抗变压器、平衡及不平衡转换变压器、抑制电子设备EMI噪音、个人电脑及外围设备的USB线路、液晶显示面板、低压微分信号、汽车遥控式钥匙等。
2.固定电感线圈包括:环型线圈、扼流线圈、共模线圈、铁氧体磁珠、功率电感、有贴片型与引脚型可供选择。广泛使用在网路、电信、电脑、交流电源和周边设备上。
3.闭磁路大电流表面贴装功率电感特点及用途:理想的DC-DC转换电感,大功率,高饱和电感器,直流电阻小,适合于大电流,带装或并卷轮包装以便自动表面安装,应用于录放影机电源供应器、录放影机电源供应器、液晶电视机、手提电脑、办公自动化设备、移动通讯设备、直流/直流转换器等。
4.射频电感的用途:广泛使用在移动电话、VCO、TCXO电路和射频收发器模组、全球定位系统、无线网络、蓝牙模组、通讯设备、液晶电视、摄影机、笔记型电脑、喷墨印表机、影印机、显示监视器、游戏机、彩色电视、录放影机、光盘机、摄影机、数位相机、汽车电子产品等。
光伏电站的共模漏电流带来很多负面问题,包括危害人身设备安全,增大电磁干扰,增加系统的额外损耗,加速光伏板的老化过程,引起共模滤波器的饱和,降低滤波效果,造成系统的损坏等。本项目建立了包含光伏逆变器共模等效电压源、长电缆、大面积光伏阵列的传导干扰传播模型,确定了电缆终端和光伏组件承受的共模电压幅度;研究了长期高压电致老化的微观机理以及漏电流在光伏组件内部的分布特性;建立了光伏阵列辐射场的模型,理论预估其辐射场强度大小和分布特性;提出了适用于光伏并网系统的分布式滤波方法,研究了滤波器与长电缆、滤波器与光伏阵列、滤波器与逆变器相互之间的阻抗匹配关系,探讨了以较小代价抑制太阳能光伏系统电磁干扰的可行性途径。本项目对于光伏并网系统电磁干扰问题及其对策的研究具有关重要的理论意义和明确的应用价值。