高炉炉缸产生的煤气,在炉缸与炉喉的压差(△p)的作用下,穿过整个料柱运动到炉喉的料面上。这个压差所反映的能量损失也称压头损失,它主要消耗在克服炉料对煤气运动的阻力上,而阻力损失主要有:一是由于煤气并非理想气体,有一定黏度,会与通道壁产生摩擦而损失能量,这一部分称摩擦阻力损失;另一则由于气体通过料层时,路径时宽时窄,质点的轨迹十分曲折,要克服湍流、漩涡和截面突然变化而造成的能量损失,这一部分称为局部阻力损失。这些阻力损失直接决定着炉内的压力变化和气流分布,气流总是在阻力小的地方通过得多些,阻力大的地方少些。研究高炉煤气运动规律的基本目的是如何减少气体的阻力,多鼓风,多出铁,同时使气流分布均匀,煤气的热能和化学能得到充分的利用,降低冶炼能耗。
块状带△p的表达式 在研究类似高炉炉料的散料层中的气体运动时,通常将气体通过料块空隙的运动,假设为气体沿着彼此平行、有着不规则形状和不稳定截面、互不相通的管束的运动。这样,就可以应用流体力学中关于气体通过无填充管道的压头损失的一般公式,并通过试验,修正公式中的阻力系数得到半经验公式。在研究分析高炉煤气运动时,经常应用的表达式有扎沃隆科夫(Н.М.Жаваронков)公式:如图1 所示。
式中γ,ρ为气体的密度,kg/m3;ω为气体的空炉速度,m/s;v为气体的运动黏度系数,m/s;ε为炉料的空隙度(量纲为1);g为重力加速度,m/s;dэ为炉料中通道的当量直径,m;dp为炉料的平均直径,m;Φ为形状系数,即炉料颗粒与球粒的差异程度(量纲为1)。扎沃隆科夫公式过去为俄国学派普遍采用,他认为高炉内煤气运动处在不稳定紊流区,相当于层流转变为紊流的过渡区。厄根公式是欧美学派的代表,他认为高炉煤气运动是紊流状态。现在冶金工作者普遍认为高炉煤气运动是处在紊流区内,所以它已取代扎沃隆科夫公式而广泛应用于世界各国的研究工作和文献中。
影响△p的因素主要是原料特性和煤气特性。原料特性主要是指它的粒度组成和空隙度,煤气特性主要是指煤气流速、温度、黏度和压力;前者决定了炉料的透气性,后者决定了煤气通过料层的能量大小,并集中地反应在△p的表达式中。
高炉炼铁过程中在风口燃烧带产生的炽热煤气穿过料柱上升到炉顶的过程。煤气在运动过程中,将热量传给下降的炉料而本身则被冷却,同时煤气中的CO和H2作为还原剂参加铁矿石的还原反应并转化成CO2和H2O。煤气与铁矿石的接触时间、紧密程度及分布的均匀性将直接影响煤气的热能和化学能的利用程度,即影响燃料消耗;而煤气的机械运动既遇到炉料的阻力又给炉料以支撑力(△p),其大小直接影响高炉进风量的多少,又影响炉况的顺行情况。因此,使煤气流与炉料充分接触,而对炉料的支撑力又最小乃是获得良好高炉操作技术指标的重要条件。研究高炉煤气运动主要是研究高炉内的压力场和煤气流量的分布,煤气运动过程中成分和温度的变化以及影响上述过程的主要因素,以期获得最好的高炉技术经济指标。
离开回旋区的煤气含CO35%左右和少量的H2,其余为N2。煤气在上升过程中成分不断变化,其规律如图2所示。N2不参加化学反应,其绝对量不变,但比值在不断降低;在高炉下部,由于直接还原使CO量不断增加,当到达中上部间接还原区时,由于部分CO参加间接还原,CO量不断减少,而生成等量的CO2,所以CO2量有所增加。煤气在上升过程中,由于吸收焦炭的有机氢和挥发分中的H2,H2含量略有增加;在间接还原区域,由于H2参加还原而有部分转化为H2O。穿过料柱到达炉喉料面上的煤气一般含CO17%~25%。焦比高的高炉,CO高;焦比低的CO低。随冶炼铁种和煤气利用率的不同而异。冶炼含Si,Mn等难还原元素多的铁种,以及煤气CO利用率低时,炉喉煤气中含CO高。CO2与CO正相反,焦比低,CO利用率高的高炉,其CO2高。铁氧化物氧化度高的炉料和石灰石用量多时,CO2高些。在一般情况下,CO CO2之和在39.5%~42%之间,基本上是常数。H2的多少除与初始含量有关外,还与H2参加还原的程度,即H2的利用率有关,利用率高的炉顶煤气中H2低;反之,则H2高。一般H2的利用率为30%~45%。此外,在冷却设备漏水时,煤气中H2含量也会升高。在采用富氧鼓风时,根据富氧率大小,煤气成分将有相应变化,主要是N2%减少,CO%和CO2%升高。
料面上的煤气由炉顶导入重力除尘器,这里的煤气称为混合煤气,生产中便根据它的成分变化来衡量煤气化学能的利用程度。
高炉和转炉煤气的理化性质和危险特性一、高炉煤气的理化性质和危险特性:1、高炉煤气的理化性能主要取决于煤气的成份,不同成份的煤气性质不同,易燃易爆、易中毒是煤气的三大特性。中毒、着火、爆炸通常称为煤气三...
高炉煤气含有H2(1.5-3.0%),CH4(0.2-0.5%),CO(25-30%),CO2(9-12%),N2(55-60%),O2(0.2-0.4%);密度为1.29-1.30Kg/Nm...
个人接触的觉得比较好的西门子、万家乐、活力、华帝、普田、美的是相对比较好的。 其中西门子的更好,主要好在材质、热效率。
由回旋区出来的煤气温度,由于测试困难,还缺少实测数据,但可根据热平衡和物料平衡作理论上的计算,计算所得结果称为风口前理论燃烧温度。该值一般在2000~2350℃范围内。在实际应用中此值不应过高,主要原因是:温度过高造成SiO的大量挥发会给操作带来困难。风温低、焦比高的中小型高炉也有低于2000℃者,但这肯定是不经济的。高温煤气在上升过程中很快将热量传给渣、铁和炉料,而自身被冷却,由料面逸出时的温度也即炉顶温度与冶炼条件有关,一般为100~400℃。煤气温度的变化过程也是激烈的热交换过程。炉顶温度是高炉内热能利用的重要标志,该温度愈低,说明热交换愈充分,热能利用愈好;反之,则说明热能利用愈差。
煤气流速对还原过程、热交换过程,煤气的压头损失以及煤气的分布均有很大影响。特别是随着高炉冶炼的日益强化,煤气流速不断增加,煤气运动问题显得愈来愈重要。为此,人们克服高温,粉尘等困难,采用毕托管、示踪原子、热线风速仪、局部煤气速度计等进行了大量的直接测量研究,并用高炉操作数学模型进行了计算分析,但因高炉内影响煤气流速的因素较多,也较复杂,所以获得的结果都不够准确。尽管如此,从众多的测量结果和数模中还是总结出了一些规律:
(1)高压操作使炉内煤气流速降低,而且流速与CO2%和温度有关,流速高处,煤气温度高,CO2含量低。
(2)用同位素氡、氪85和水银蒸气作示踪原子,测量得到:
由此推算煤气的线速度在2.5~6.8m/s之间。计算结果是固定床空隙度为0.416~0.42的炉料在运动时空隙度达到0.457~0.634,也就是增加了1.09~1.51倍。
(3)生产高炉的炉体半径上煤气分布是不均匀的,中心区煤气流速高。但在半径的任何位置上,从料面向下3~4m处煤气流速都达到最大,而在炉腰附近煤气流速最低,再向下在靠近炉缸处速度又有所增加。
炉缸产生的煤气,在炉缸与炉喉的压力差(△p)作用下,穿过整个料柱运动到炉喉料面上。总的压力变化规律是,在正常情况下,沿着炉子高度压力逐渐降低,基本上呈一直线。若某处偏离正常直线,说明该部位透气性发生了变化。炉缸煤气的压力主要决定于风量、风压、炉顶压力和料柱透气性。风量愈大,风温越高炉顶压力愈高,料柱透气性愈差则炉缸煤气压力愈高;反之则愈低。由于高炉上不常测量炉缸压力,生产中在计算炉缸与炉喉之间的压力差时,常用热风压力代替炉缸煤气压力,故而在使用△p时,应该考虑到,其中包括从热风围管、热风支
多数高炉在炉身下部装有测压装置,这样就可以测量出风压与炉身下部之间的压差△p下和炉身下部与炉顶之间的压差△p上。利用△p下和△p上可以算出高炉下部透气性指数和上部透气性指数,并借此判断高炉行程。例如,当出现崩料,悬料(见悬料与坐料)等现象时,就可以利用上、下部压差的变化,判断故障发生的位置并采取相应的措施。也有的高炉在炉身部分设2~3层测压装置,连同风压和炉顶压力便可以取得高炉3~4个区域的压差(图3),这对分析高炉操作很有帮助。对于沿高炉高度上静压力变化的研究表明,炉料的透气性发生变化和装料制度变更时,主要对高炉上部压差有影响;而风温,风量,造渣制度(初渣数量和初渣性质)等则主要影响下部压差。当炉况不顺,出现悬料时,在悬料区段压差升高,而在管道行程时,该区段压差降低。
大型高炉煤气取样分析远程监控系统 目前,大型炼铁高炉煤气取样分析控制系统大多是人工装置, 人工取样不仅劳动条件恶 劣,而且分析结果很难代表某一时间高炉煤气成分实际的径向分布。 为此笔者设计了大型炼 铁高炉远程煤气自动取样分析监控系统。 本系统采用安装组态软件 MCGS 的工控机为上位机 和 PLC 为下位机来对大型炼铁高炉 (2200 m3 ) 远程煤气取样现场进行过程监控,取代了目 前的人工取样分析装置。 1 系统组成 本系统由工控机、 煤气取样现场控制柜、 煤气取样机和红外在线分析装置组成。 工控机 安装在主控室, 用以收发取样分析系统的远程信号, 记录、储存、显示和处理各项分析结果。 煤气取样现场控制拒安装在取样装置平台上, 在控制柜上可以手动操作也可以自动操作, 煤 气取样机安装在取样平台上, 受现场控制柜控制, 是直接驱动采样杆从炉中取气的机械装置。 红外在线分析装置安装在取样平
高炉煤气处理系统 一. 煤气处理包括:( 1)除尘;( 2)脱水。 二. 煤气除尘设备及原理 (1)除尘流程 a. 除尘的原因及目的; 高炉冶炼过程中,从炉顶排出大量煤气,其中含有 CO、 H2、CH4等可燃气体,可以作为热风炉、焦炉、加热炉等的燃 料。但是由高炉炉顶排出的煤气温度为 150~ 300oC,标态含有 粉尘约 40~100 g/m3。如果直接使用,会堵塞管道,并且会 引起热风炉和燃烧器等耐火砖衬的侵蚀破坏。因此,高炉煤 气必须除尘后才能作为燃料使用。 b. 煤气除尘设备:湿法除尘、干法除尘。 湿法除尘: 干法除尘: 干法除尘有两种,一种是用耐热尼龙布袋除尘器,另一种是干式电 除尘器。 (2)设备 a. 粗除尘设备:重力除尘器、旋风除尘器 重力除尘器: 利用自身的重力使尘粒从烟尘中沉降分离的装置。 重力除尘器除尘原理是突然降低气流流速和改变流向,较大颗粒的灰 尘在重力
BFG是高炉煤气(Blast Furnance Gas)的英文缩写,高炉炼铁过程副产,产率高达吨铁约2000m3;但热值低,CO含量高,毒性较大,以往使用价值较低。
BFG因热值低,常温下燃烧不稳定,理论燃烧温度只有300℃左右。一般工业炉都使用BFG与COG配置的混合煤气。高炉热风炉凭借炉内耐火砖砌体热容量大所形成的高温环境,使单一BFG能够稳定燃烧。如要求获得更高的热风温度,还需要将BFG和助燃空气预热后送热风炉燃烧。复热式炼焦炉使用单一BFG,是将BFG和助燃空气通过蓄热室的格子砖预热到1000℃左右,然后进入燃烧室立火道燃烧,可使炭化室炉墙加热到1100℃以上。
近年来钢厂为节能降耗,纷纷将原先因富余而放散的BFG和LDG送锅炉掺烧,LDG的回收率已有所提高。BFG燃烧降低炉膛辐射传热效果,而且废气量又大。掺烧多了影响锅炉的热效率。2100433B
高炉煤气中带有大量的灰分,灰分含量可达60~80g/Nm3,而水蒸气通常是饱和的,所以它是一种低级燃料。通常,高炉煤气在使用前应进行净化处理,有时与重油或煤粉掺和作为工业炉和锅炉的燃料 。
高炉煤气在钢铁厂的应用
烧纯高炉煤气锅炉发电技术、燃气-蒸汽联合循环发电机组和高温蓄热式燃烧技术的研制成功并在钢铁企业中的广泛应用,为高炉煤气的有效利用提供了很好的途径 。
高炉煤气除作为加热燃料供钢铁厂使用外,还能用于发电等其它用途,利用好这部分副产能源不仅能降低企业的能源消耗,还将改善钢铁企业对周边环境的污染。
提高高炉煤气利用的措施
低热值高炉煤气的特点是可燃成分低,燃烧不稳定,燃烧温度低,烟气量大。火焰稳定直接关系到燃烧的安全性,对低热值煤气一般都采用稳定强化燃烧的措施,如富化高炉煤气或采用换热器对高炉煤气和助燃空气双预热等 。
一、高炉煤气需要预热
同体积的高炉煤气的发热量较焦炉煤气低得多,一般为3300—4200KJ/m3。热值低的高炉煤气是不容易燃烧的,为了提高燃烧的热效应,除了空气需要预热外,高炉煤气也必须预热。因此使用高炉煤气加热时,燃烧系统上升气流的蓄热室中,有一半用来预热空气,另一半用来预热煤气。煤气与空气一样,经过斜道进入燃烧室立火道进行燃烧。
二、燃烧系统的阻力大
用高炉煤气加热时,耗热量高(一般比焦炉煤气高15%左右),产生的废气多,且密度大,因而阻力也较大。而上升气流虽然供入的空气量较少,但由于上升气流仅一半蓄热室通过空气,因此上升气流空气系统和阻力仍比焦炉煤气加热时要大。
三、高炉煤气燃烧火焰较长
高炉煤气中的惰性气体约占60%以上。因而火焰较长,焦饼上下加热的均匀性较好。
由于通过蓄热室预热的气体量多,因此蓄热室、小烟道和分烟道的废气温度都较低。小烟道废气出口温度一般比使用焦炉煤气加热时低40—60℃。
四、高炉煤气毒性大
高炉煤气中CO的含量一般为25%—30%,为了防止空气中CO含量超标,必须保持煤气设备严密。高炉煤气设备在安装时应严格按规定达到试压标准,如果闲置较长时间再重新使用前,必须再次进行打压试漏,确认管道、设备严密后才能改用高炉煤气加热。日常操作中,还应对交换旋塞定期清洗加油,对水封也应定期检查,保持满流状态,蓄热室封墙,小烟道与联接管处的检查和严密工作应经常进行。
高炉煤气进入交换开闭器后即处于负压状态。一旦发现该处出现正压,应立即查明原因组织人力及时处理,确保高炉煤气进入交换开闭器后处于负压状态。
五、高炉煤气含尘量大
焦炉所用的高炉煤气含尘量要求最大不超过15mg/m3。2012年以来由于高压炉顶和洗涤工艺的改善,高炉煤气含尘量可降到5mg/m3以下,但长期使用高炉煤气后,煤气中的灰尘也会在煤气通道中沉积下来,使阻力增加,影响加热的正常调节,因而需要采取清扫措施。
另外,高炉煤气是经过水洗涤的,它含有饱和水蒸汽。煤气温度越高,水分就越多,会使煤气的热值降低。从计算可知,煤气温度由20℃升高到40℃时,要保持所供热量不变,煤气的表流量约增加12%。因此要求高炉煤气的温度不应超过35℃。当煤气温度发生一定变化时,交换机工应立即调整加热煤气的表流量,以保证供给焦炉的总热量的稳定。