中文名 | 概率空间中非线性算子的不动点问题及其应用 | 项目类别 | 数学天元基金项目 |
---|---|---|---|
项目负责人 | 吴照奇 | 依托单位 | 南昌大学 |
本项目主要对概率空间和其他类型空间中非线性算子的不动点与重合点、概率空间中非线性算子的固有值与固有元及广义量子门等问题进行了研究,获得了一批新成果,丰富和发展了概率空间中的非线性算子理论和不动点理论。 首先,建立了Menger PM-空间中弱偏向映射对和偶然弱偏向映射对在不同压缩条件下的若干新不动点定理,在Z-P-S空间中研究了半闭1-集压缩算子的固有值与固有元存在的条件,利用半序方法,通过构造不同的压缩条件,研究了一类序压缩算子对的重合点存在性,同时,在半序Menger PM-空间中引入广义循环弱压缩映射的概念,并建立了关于此类映射的重合点定理。 其次,给出了广义量子门的一个新等价刻画,证明了许多常见的算子类均为广义量子门,同时指出广义量子门全体所成集合和限制允许广义量子门全体所成集合为同一集合。 再次,在Menger概率G-度量空间中引入两类压缩映射的概念,并证明了关于此两类映射的若干不动点定理,同时,引入广义Menger PM-空间以及映射对的三重公共不动点的概念,并研究了具有规函数的混合概率压缩的三重公共不动点的存在唯一性问题。 最后,在偏b-度量空间中引入关于三个映射的一类扩张映射和一类广义弱扩张映射的定义,在此基础上建立了偏b-度量空间中关于此两类映射的一些公共不动点定理,并讨论了关于一类积分方程组的解的问题,同时,研究了锥度量空间中Ciric型广义压缩条件下两个非自映射对的公共不动点定理。
概率度量空间中非线性算子的不动点理论是概率分析的重要研究内容,对于丰富和发展概率度量空间理论和非线性泛函分析均具有十分重要的意义。在申请人前期对概率度量空间中不动点问题及拓扑度理论取得的研究成果基础上,本项目将综合利用迭代方法、拓扑度方法与半序方法集中研究以下两方面问题:首先,通过减弱映射对可交换性条件或推广到混合情形,来获得概率度量空间中相容型或非相容型映射的新的不动点定理,并在半序概率度量空间中研究压缩条件下自映射的三重重合点与不动点的存在唯一性;其次,继续深入研究概率赋范空间中的拓扑度和不动点指数理论,建立Menger PN-空间中半闭1-集压缩算子的不动点指数,同时进一步研究Menger PN-空间中各类非线性算子的拓扑度与不动点指数计算,并应用于各种非线性方程,尤其是某些非线性积分方程解的讨论。
非线性负载是指内含整流设备的负载。在电子线路中,电压与电流不成线性关系,在负载的投入、运行过程中,电压和电流的关系是经常变化的。所谓非线性,就是自变量和变量之间不成线性关系,成曲线或者其他关系。用函数...
一般是指用于抑制雷电过电压和操作过电压等瞬态过电压的压敏电阻器;绝大多数压敏电阻器都属于这一类。压敏电阻器的保护功能,绝大多数应用场合下,是可以多次反复作用的,但有时也将它做成电流保险丝那样的"一次性...
线性负载:linear load 当施加可变正弦电压时,其负载阻抗参数(Z)恒定为常数的那种负载。在交流电路中,负载元件有电阻R、电感L和电容C三种,它们在电路中所造成的结果是不相同的。在纯电阻电路中...
在概率密度演化理论的框架下,发展了基于概率空间剖分的多维空间选点方法。引入点集Voronoi域内的概率作为点集的赋得概率,对点集的F-偏差进行了以赋得概率替代均匀概率的修正。在此基础上,进行误差估计,提出了以点集的修正F-偏差、一阶偏差和二阶偏差均尽可能小为准则的点集选取方法——两步选点法。分析实例表明,基于概率空间剖分的选点方法具有较高的精度和效率。文中最后指出需要进一步研究的问题。
特深特大基坑围护的非线性的空间设计计算——本文采用文献[1]提出的基坑围护的非线性的空间设计计算方法对特深特大的基坑围护工程——上海恒隆广场进行计算,其结果符合实际情况,而且计算时间比较短。因此,该计算方法及其相应软件--超明星软件,为特深特大基...
抽象空间上的非线性算子半群理论和非线性微分包含以及分数阶微分方程是非线性(线性)分析理论中非常活跃并且具有很强应用背景的的一个分支。近几十年来, 随着微分包含理论的日渐成熟及其广泛的实践应用,它已交叉渗透进许多科学领域,例如数学物理上的反应—扩散问题,不变流问题、非线性发展方程、正解的存在性理论、控制论、最优化等诸多问题中。 结合Banach空间几何理论和线性算子理论,我们研究了抽象连续函数空间中与线性算子半群有关的一类有界子集的等度连续模与其截口的Hausdorff非紧测度之间的关系,并由此得到当半群失去紧性及等度连续性时,Banach空间中半线性非局部时滞方程适度解的存在性。 利用Kato逼近的方法,我们研究了Banach空间中由m增生算子控制的无穷时非线性发展方程强解的存在唯一性。利用构造近似解逐步逼近的方法,我们证明了Banach空间中半线性无穷时滞微分方程不变流存在的条件。 利用同样的方法,我们还得到了当初始值在区间内部时,非线性Caputo分数阶微分方程不变流存在的条件。 为了克服Riemann-Liouville分数阶微分方程当初始值非零时解无界的困难,我们引入了加权时滞的概念, 利用非紧测度理论及相关的不动点定理,我们得到了Banach空间中加权无穷时滞Riemann-Liouville 分数阶微分方程适度解的存在性和连续依赖性。为研究解析预解族的指数稳定性,我们引入了预解族几乎指数稳定的概念。由此通过重构Contour积分路径和Rescaling技巧给出了解析预解算子在谱条件下几乎指数稳定的充分条件。特别地,我们获得了在全局谱条件下,解析预解算子指数稳定的充分条件。这些结果推广了解析半群稳定性的经典结论,并说明了解析预解和解析半群指数稳定的不同之处。我们通过最优化的必要条件构造出控制函数,证明了在线性系统近似可控的情况下,Hilbert空间中一非线性混合分数阶松弛方程在这一控制函数作用下也是近似可控的。利用测度理论,我们给出了伪概自守函数的复合定理,并由此给出了由预解算子控制的半线性微分方程解的伪概自守性质。
o.Banach空间上的非线性微分包含是非线性分析理论中非常活跃的一个分支,近几十年来, 随着微分包含理论的日渐成熟及其广泛的实践应用,它已交叉渗透进许多科学领域,例如数学物理上的反应-扩散问题,控制论上的最优化问题,甚至工程问题,经济问题等越来越多的领域中涉及的问题都可以转化为微分包含问题.我们通过综合应用线性算子理论和Banach空间几何理论与非线性分析的方法研究Banach空间上若干非线性微分包含的解的存在性理论以及在控制学科等方面的应用,研究半线性非局部微分包含解的存在性理论,引入新的方法和技巧研究可控性微分包含解的存在性问题,研究二阶微分包含的边界值问题。通过应用我们自己的一些方法和技巧,研究非Lipschitzian可逆拓扑算子半群的遍历理论和渐近行为,不动点问题和非扩张压缩的存在性问题,进一步探讨可逆半群的非扩张的Sunny压缩的充要条件。
立足于Banach空间结构和Banach空间上算子代数K-理论研究的国际前沿,研究G-M型空间新品种与分类,及其在空间理论中的地位和作用,努力发展由G-M系列成果而刷新的Banach空间算子代数K-理论,深入探讨空间结构- - 算子结构- - 算子代数K-群结构三级之间互相联系,互相作用的规律性。紧扣当前业内同行关注的若干热点问题,诸如(1)不可分的遗传不可分解空间的存在性问题(它与无限维可分商问题的内在联系);(2)Pisier空间(一种有最小算子构成的空间)的存在性问题(它与算子的不变子空间问题联系);(3)关于本性不可比空间的G-猜想;(4)是否有一个Banach空间X,其上算子代数B(X)的Ko群为(非零)有限群的Szak猜想等等进行探索。在原有工作基础上,再上结合算子研究空间的新台阶,本着开展前瞻性,勇于创新的探索性研究宗旨,力图通过研究得到新发现,取得重要进展。 2100433B