中文名 | 高炉炉龄 | 外文名 | Blast furnace life |
---|---|---|---|
概 念 | 点火到停炉大修的实际运行时间 | 炉役结束标志 | 炉衬侵蚀严重等 |
维护内容 | 维修技术的改进和长寿操作技术 | 学 科 | 冶金工程 |
在高炉一代炉役里,炉墙绝大部分时间要靠渣皮来保护,如何形成稳定坚固的渣皮和提高渣皮脱落后的快速恢复能力才是解决高炉长寿的关键所在。
高炉一代炉役长短主要取决于炉缸寿命。美钢联通过对其17座高炉的多年监测发现,避免炉缸碳砖与渣铁直接接触对于延长炉缸寿命是非常重要的,而能够避免炉缸碳砖与渣铁直接接触的有效措施就是促使渣皮形成。只要有渣皮存在,就几乎不会出现炉缸侵蚀;当渣皮消失时,炉缸侵蚀就会加速。因此延长炉缸寿命关键的一点,是促使渣皮形成并能够避免脱落。美钢联与普度大学联合研究了炉缸渣皮形成的影响因素及提高渣皮形成率的技术措施 。使用传热、流体流动力学和计算机模型对渣皮形成进行了研究,模拟的炉缸直径约为11.28 m,铁口侧耐火砖衬厚约2 438.4 mm,非铁口侧厚约1 193.8 mm。对50种不同情况进行了研究,结果与美钢联高炉的操作经验相一致。设计及操作参数对渣皮形成的影响概括如下:
(1)耐火砖衬厚度:随耐火砖衬变薄,渣皮形成率增加;无论模拟计算值还是测量值,均具有相似的趋势。铁口区较厚的耐火材料与非铁口区较薄耐火材料相比,渣皮的脱落和耐火材料的侵蚀更易发生。
(2)铁水流速:靠近炉缸侧壁的铁水流速对炉缸侵蚀起很大作用。随铁水流速降低,渣皮形成率增加。而铁水流速受一些操作变量的影响很大,其中最重要的影响因素是死料柱透气性、出铁操作和铁水生产率。因此,为了使渣皮不脱落,应该采取措施提高死料柱透气性、改进出铁操作以及降低生产率。
(3)冷却水进口温度:随冷却水进口温度升高,渣皮形成率稍有提高。对于铁口区耐火砖衬,在冷却水进口温度由0℃升高至35℃时,渣皮形成率仅降低5%。冬天冷却水进口温度约0℃,夏天冷却水进口温度23.89℃ ,未发现渣皮厚度随冷却水进口温度季节性的变化而有明显的变化。但在夏天的几个月,冷却水进口温度频繁变化时,能观察到一些渣皮脱落现象。可以使用密闭循环系统避免水温的短期波动。
(4)铁水温度:随铁水温度升高,渣皮形成率将减小。当铁水温度为1 482℃时,渣皮形成率为28%;当铁水温度为1 537℃时,将不复有渣皮存在。当铁水温度降至1 454℃时,渣皮形成率增加至55%。因此,为了保证炉缸侧壁的渣皮存在,必须控制炉缸热状态。结合实际经验得出:在铁水平均温度降至1 476—1 490℃范围时,可以促进铁口附近渣皮形成。
(5)出渣铁操作:炉渣比铁水黏度高,熔融温度也高,模拟表明这种情况下很容易在炉缸侧壁形成渣皮,即在耐火衬较厚的铁口区,日出铁量7 257.6 t时,渣形成渣皮率达100% ,而铁水仅为28% 。表明出铁操作对于形成渣皮保护层是关键的,保持炉缸尽量少的铁水对渣皮形成是有益的。
(6)铁水黏度:渣皮形成率随铁水黏度升高而增大。通常铁水黏度为0.007 Pa·s,对耐火衬较厚的铁口区,渣皮形成率约为28% ;在铁水黏度为0.02 Pa·S时,渣皮形成率约为43% 。这些结果与实际情况相符。当添加含钛物料使铁水钛含量小于0.07%时无效;在铁水钛含量大于0.07%时,TiC和TiN颗粒沉淀导致铁水黏度升高,渣皮形成率增大;在铁水钛含量大于0.2%时铁水黏度极高,熔融温度也很高,会发生严重的出铁困难。正常范围应为0.08% -0.15% ,既可促进渣皮形成又可避免出铁问题。
总之,操作技术对炉缸内衬侵蚀发展起着关键作用,一旦发生侵蚀而导致渣皮脱落,为了恢复渣皮,可采用以下操作原则:
(1)通过降低生产率来减小渣铁流速,情况严重时暂时休风。如果发生局部侵蚀,可以堵塞风口,如果发生较大区域侵蚀,降低喷煤率,使用高CSR和大粒焦炭。
(2)保持操作稳定,避免炉子过热,维持较低的铁水温度(即1 454 ℃)。
(3)出净渣铁,使铁口长度和角度最大,以保持较低渣铁液位。
(4)通过加入适量的含钛物料适当提高铁水黏度。
1 含钛物料与煤粉一起喷吹的护炉技术
欧洲高炉通常采用把含钛物料与煤粉从风口一同喷进高炉的办法保护炉缸,防止炉缸出现过早侵蚀。这些含钛物料包括钒钛矿、钛铁矿和人工合成TiO₂等。含钛物料进入高炉内,通过在炉缸生成Ti(C,N)沉淀来护炉。
该方法比常用的把含钛物料从高炉炉顶加入的办法具有优势。因为从炉顶加入具有以下缺点:原料利用率较低、高炉能耗增加;如果炉缸某一部位出现热点,使用该法要等待一段时间后才起作用;如果增加含钛物料入炉量,会增加炉渣黏度、影响铁水质量。而风口喷吹法则原料利用率高、热点修复快,而且对高炉操作影响小。
2 通过控制炉渣成分延长高炉炉缸寿命的技术
韩国浦项科技大学研究了通过控制炉渣成分延长炉缸寿命的可行性。目前国内外一些钢铁企业通过添加含TiO ₂物料在炉缸形成碳化钛沉积来保护炉缸耐火衬,以达到延长炉缸寿命的目的。
但是,因为碳化钛只在铁水中形成,所以在炉缸中形成保护层的区域很有限。如果同时在铁水和炉渣中形成高熔点化合物沉积下来,则能够更有效地防止炉缸耐火衬磨损;但是改变炉渣成分和在炉渣中形成高熔点化合物会影响炉渣黏度,进而影响炉渣流动性,可能导致严重的操作问题。浦项科技大学基于这种想法研究了新的炉缸耐火衬保护技术,希望既可促进炉渣中形成高熔点化合物,同时又保证炉渣良好流动性。
选择的添加物为TiO₂,研究了在高炉渣中添加TiO₂ 对炉渣性质的影响,根据研究结果选择最佳炉渣成分,在这种成分下既可形成高熔点化合物尖晶石,又保证炉渣具有良好的流动性。实验研究了添加TiO₂ 对炉渣黏度和临界温度以及形成高熔点化合物尖晶石的影响。
高炉长寿是企业效益的重要组成部分之一,并且对钢铁企业的正常生产有重大影响。国内包括鞍钢在内的钢铁企业,近年来在高炉长寿技术方面有了许多改进,但仍有许多工作要做,包括维修技术的改进和长寿操作技术的优化等 。
目前所知最古老高炉是中国西汉时代(纪元前1世纪)熔炉。在纪元前5世纪中国文物中就发现铸铁出土可见该时代熔炼已经实用化。初期熔炉内壁是用粘土盖的,用来提炼含磷铁矿。西方最早的熔炉则是于瑞典1150年到1...
关键是高炉1、高炉是工业炼铁的主要设备2、炼钢使用的是平炉或者转炉、电炉等
由于铜冷却壁具有导热性好、抗拉强度高、抗热震性和抗热流冲击性好等优势,自2000年以来,铜冷却壁在我国许多高炉得以推广应用。但近年来,国内先后有多座高炉发生了铜冷却壁损坏事故,严重影响了高炉生产。
1 安装金属软管或雪茄式冷却器
台湾中钢和宝钢成功开发和应用了该技术。台湾中钢2号和1号高炉分别于2006年1月和2010年6月在炉腹、炉腰和炉身下部区域安装了铜冷却壁,又分别于2011年9月和11月出现铜冷却壁漏水事故。为了保护炉皮,把小型金属软管穿入漏水的冷却壁管道代替原来的冷却水管道,在金属软管外与原冷却水管道之间的缝隙灌进导热性好的浇注料以提高冷却能力。
在选用浇注料时,台湾中钢通过传热分析认为,使用低导热性(1.5 W/m·℃)的浇注料其冷却能力不能满足稳定操作期间的要求;只有使用高导热性(15 W/m·℃)的浇注料才能满足高炉稳定操作期间的要求。
在金属软管被侵蚀并再次漏水后,休风并把浇注料灌进软管;为了保护炉皮,从炉皮向里安装雪茄式冷却器。
为了达到较好的效果,使用传热分析对安装24个雪茄式冷却器后炉皮温度与炉内煤气温度之间的关系进行了研究,结果表明,在炉内煤气温度400℃情况下,使用导热系数分别为1.5、10 W/m·℃和15 W/m·℃的浇注料时,炉皮温度分别为127、107℃和100℃。这意味着,在稳定操作期间,使用24个雪茄式冷却器处理漏水铜冷却壁是可行的。但是,在炉内煤气温度为1 200℃时,无论使用何种浇注料,炉皮温度均高于200℃;因此,此种方法只适于炉内煤气温度较低的区域,如炉身中部及以上部位,1 200℃及温度更高的区域不适用。在温度较高的区域发生冷却壁破损,最好采用冷却壁更换技术。
即使非铜质冷却壁出现漏水或破损,也可采用上述措施。如宝钢3号高炉上炉役也曾出现冷却壁(非铜冷却壁)破损并采用了类似的处理技术。效果良好。宝钢3号高炉上炉役于1994年9月投产,开炉最初几年,出现冷却壁水管破损现象,其中最严重的一次是,炉身中下部的S3和S4段冷却壁水管出现大量破损,其中S3段冷却壁凸台管破损率达95%,本体管破损率达71% ,针对S3、S4段冷却壁水管破损日趋严重的状况,宝钢采取了与台湾中钢处理漏水铜冷却壁相似的技术措施,首先在破损的本体管内穿人不锈钢软管,在不锈钢软管被侵蚀并再次漏水后,采用安装微型冷却器的措施。在微型冷却器再次损坏后,整体更换冷却壁。
2 采用冷却壁更换技术
新日铁住金的原住友金属公司和宝钢都开发和成功应用了冷却壁更换技术。1982年开炉的和歌山厂4号高炉,从1986年左右就开始出现冷却壁破损,住友金属公司于2002年用111 h更换了102块冷却壁,于2006年用93 h更换了78块冷却壁 。
宝钢3号高炉上炉役初期出现冷却壁损坏,分别于2004年3月(100 h)和2009年5月(93 h)对S3和S4段冷却壁进行了整体更换作业。冷却壁更换操作包括以下方面:
(1)休风降料线。
①根据料线高度控制送风量,防止出现管道现象;
② 为保护炉顶设备,选择合适洒水设备和洒水量;
③降料线操作和休风时间控制。住友金属在操作设计、计划制定中,曾采用数学模型进行了模拟研究。
(2)冷却壁更换作业。
首先,在炉顶开设大入孔和在破损冷却壁上部一定位置开冷却壁出入孔,具体孔数根据所计算的炉皮强度来定,宝钢3号高炉当时根据计算结果开设了4个孔,并在开孔位置铺设专用环形轨道,再在轨道上布置冷却壁运输台车,进行冷却壁运输。在高炉炉顶外部平台上沿炉身一圈事先架设20台左右的无走行固定式电动葫芦,特殊设计的“吊钩”在高炉休风后通过顶部开孔进入炉内进行吊装作业。先拆除冷却壁并吊出。冷却壁拆除时使用液压千斤顶,通过焊接在炉皮上的槽钢反力架把冷却壁推入炉内。在旧冷却壁冷却管保护管上焊上吊耳,在旧冷却壁被完全推出后从炉顶人孔或者炉皮开孔中吊出。
旧冷却壁吊出后,对安装面进行清理,再吊装新冷却壁。然后在炉皮与冷却壁之间的缝隙压人耐火材料。
(3)完成冷却壁更换之后,再恢复料线高度,提高送风量。为提高炉内温度, 适当提高焦比。
高炉长寿是一项系统工程,除了提高设计和建设水平外,还应该开发优化维护技术、长寿操作技术、检测技术。在企业长期积累基础上,不断改进,形成自己系统且有效的技术,才能有效实现长寿目的。尤其是目前情况下,高炉冶炼强度较高,企业为降低成本采用多种炉料,来料波动几率增加,高炉要实现稳定操作非常不易,使高炉内衬和冷却系统经受频繁热负荷波动,更应该开发有利于长寿的操作技术、监测技术和维护技术 。2100433B
新日铁住金株式会社 与普通水泥相比,高炉水泥具有以下优点。 ①长期强度大幅提高。 ②由于耐海水性和耐化学性强, 而且氯化物离子的扩散系数小, 最适合海洋结构物。 ③具有抑制碱骨料反应的效果, 也可以使用再生骨料等。 ④由于发热速度慢, 因此可以有效抑制温度裂纹。 ⑤用于地基改良工程时, 可有效抑制六价铬。 水 其 他 土 壤 空 气 废 弃 物 处 理 ? 再 生 资 源 ?节 省 资 源 节 省 能 源 ?能 源 回 收 蓄 能 ?创 能 新 能 源 能 源 水 泥 制 造 工 厂 新日铁住金株式会社 邮编 100-8071 东京都 千代田区丸之内2-6-1炉渣、水泥事业推进部 高炉水泥用高炉水碎炉渣 生产水泥时产生的 CO 量削减 40% 以上 通过减少使用水泥生产中必需的石灰石和燃料, 每吨水泥的 CO 排放量可减少 320Kg 。 高炉水泥的长期强度大幅提高, 盐分扩散则变少,
分析了影响冶炼不锈钢的电炉炉龄的主要因素。通过选用高质量耐火材料,提高炉衬抗氧化和耐侵蚀性;采用约45%的铁水热装比优化配料模式,以及优化供电曲线以降低电能消耗;采用渣泡沫化技术改进造渣工艺等提高电炉炉龄综合控制技术,电炉炉龄明显提高。2008年平均炉龄为507炉,最高炉龄达到了790炉。电炉炉龄作为一项体现冶炼综合水平的指标,炉龄的提高表明电炉采用热装脱磷铁水冶炼不锈钢母液工艺日渐成熟。
高炉开炉是新建或大修后的高炉投入炼铁生产时进行的操作。这是一项重要的高炉操作,它关系到高炉是否能在规定的时间内顺利达到额定经济技术指标和一代炉役的寿命。
炉身是保证高炉冶炼的重要部分,炉身厚度包括炉壳、填料、冷却壁和炉衬。高炉生产过程中,因受到上升的煤气流和下降的炉料冲刷和磨损、高温和化学反应等物理化学因素的作用,炉身侵蚀严重,破坏了操作炉型,将影响高炉冶炼顺行,也影响高炉的使用寿命及生产安全。炉身寿命一直是至关高炉长寿的一个关键问题,引起人们的广泛重视。
国外的很多研究单位都做过高炉炉体厚度检测的方法研究,如日本、美国和荷兰一些国家曾采用热电偶法、电磁脉冲法、电阻法和电容法等方法检测炉壁厚度。
高炉炉身厚度在线监测技术,可以实时监测高炉炉身厚度的变化,曾先后在包钢、首钢、太钢和水钢等11 座高炉上应用。经高炉生产应用证实,该技术对掌握炉身厚度变化、高炉何时采取补炉措施、保证高炉生产安全都有一定的指导作用。该项技术1999 年获得国家科技部科技进步三等奖,2007年与另一项技术共获国家专利,该技术也曾被列为国家级科技成果重点推广项目 。
高炉渣内主要矿物组成有钙黄长石、镁黄长石、钙长石、透辉石、硅灰石、二硅酸三钙等。从高炉渣的化学成分和矿物组成来行,它属于硅酸盐范畴。
组成高炉渣的四种主要氧化物,正是普通钠钙硅玻璃的主要成分。高炉渣含挥发物质极少,化学、物理结构稳定,且不受天气条件的影响。因而,高炉渣苗玻璃工业中的应用有着广阔的前途。
大量的研究试验结果表明,玻璃工业中使用高炉渣已不仅是个综合利用问题,而且还有改善玻璃的澄清,减少制品的灰泡数,降低熔制温度,提高熔制效率,降低生产成本和稳定玻璃颜色的独特功能。
迄今为止,人们为提高玻璃产量,设想了许多新方法,如控制进氧量,更改喷抢角度,变化原料颗粒大小及使用新的辅助原料等。但实践证明,高炉渣是有助于提高玻璃熔窑出料量,改善玻璃质量的最有价值的新原料之一。我国高炉渣资源丰富,它的综合利用是大有可为的 。