采用负载电压作为换流电压的逆变电路。这种电路无需设置独立的换流电路,常采用普通晶闸管组成,但仅适用于容性负载。因为只有在这种性质的负载条件下,负载电压才能有效地被用作换流电压以关断退出导通的晶闸管。
中文名称 | 负载换流式逆变电路 | 表达式 | 采用负载电压作为换流电压的逆变电路 |
---|---|---|---|
适用领域范围 | 负载换流式逆变电路 | 内容 | 逆变串并联逆变无换向器电动机 |
随着负载形式的不同,负载换流式逆变电路包含以下 4种电路。①有源逆变电路:负载为公共电网的电路;②并联逆变电路:负载是呈容性的并联谐振电路;③串联逆变电路:负载是呈容性的串联谐振电路;④无换向器电动机:负载是处于过激状态的同步电动机,用逆变电路代替机械换向器。
采用负载电压作为换流电压的逆变电路。这种电路无需设置独立的换流电路,常采用普通晶闸管组成,但仅适用于容性负载。因为只有在这种性质的负载条件下,负载电压才能有效地被用作换流电压以关断退出导通的晶闸管。
工作原理:桥式逆变电路的开关状态由加于其控制极的电压信号决定,桥式电路的PN端加入直流电压Ud,A、B端接向负载。当T1、T4打开而T2、T3关合时,u0=Ud;相反,当T1、T4关合而T2、T3打开...
逆变器是一种把直流变交流的电路结构设备,全桥和半桥是内部驱动电路的结构形式,通俗的说,全桥是由4个驱动管轮流工作于正弦波的各个波段,半桥是2个驱动管轮流工作于正弦波的各个波段, 参照整流电路比较好理解
本人相册雪景部分具有一些原理图可以看看。
变频器的三相桥式SPWM逆变电路
具有并联谐振式负载的逆变电路。生产中用以构成静止式中频加热电源。并联逆变电路有两个特点:①直流电源为电流源,逆变入端串联大电感Ld,因而入端电流id平滑连续(见电流型逆变电路);②负载是处于高端失谐的并联谐振电路,呈容性,故可采用负载换流方式(见负载换流式逆变电路)。因此,并联逆变电路也是一种负载换流式电流型逆变电路。
工作原理
概述图中LH代表含有加热工件的感应线圈。为了提高负载端的功率因数,在LH两端并联补偿电容CH,组成并联谐振式负载电路。其固有谐振角频率ω0可近似表示为由并联谐振电路分析可知,若外加电源的角频率ω=ω0,则电路处于谐振状态,电路呈纯阻性;若ω>ω0,则电路处于高端失谐状态,呈容性。
概述图中逆变电路采用桥式结构,各导电臂均用普通晶闸管组成。当T1T3导通而T2T4阻断时,ia=Id;当T2T4导通而T1T3阻断时,ia=-Id;当T1~T4轮番通断时,ia即为交变方波,方波幅值为Id,重复角频率ω则取决于T1~T4门极控制脉冲。当ω>ω0时,负载将呈容性,可以利用负载电压ua作为换流电压关断退出导通的开关元件,因而即使采用普通晶闸管时也无需设置专门的换流电路。
尽管并联逆变电路的输出电流ia为交变方波,但这一电路的输出电压ua却近似为正弦波。这是由于ia中基波以外的电流谐波均从负载电容CH中旁路的缘故。
并联逆变电路的直流电源采用相控整流电路如概述图所示。该电路的作用有以下两个。
①调节逆变输出功率PH。若忽略逆变电路损耗,应有
PH=Pd=UdId
式中Pd为直流功率,Ud为直流电压平均值,Id为直流电流id平均值。由式可见,在相同的负载下,改变Ud就可实现PH的调节。由相控整流电路分析可知
Ud=2.35U2cosα
式中U2为电网相电压方均根值,α为滞后控制角。上两式表明,改变α 即可调节PH。
②抑制故障电流。当逆变电路产生故障时,如果T1、T4同时导通,则直流电源将沿电感Ld短路,如不加以控制,将流过很大的短路电流。由相控整流电路分析可知,在概述图所示电路的情况下,如果α>90°, 整流电路将转入逆变工作状态,负载端电能将反馈回交流电网。因此,采用这种方法,当逆变端产生短路电流时,使α>90°,则原先贮存在Ld中的能量将返回电网,从而抑制故障电流。
应用领域 并联逆变电路的典型应用是构成静止式中频加热电源。它的技术经济指标均比旋转式中频机组优越,因而得到广泛应用。它的最高单台容量为2MW,多台并联达10MW。中国产并联逆变电路能输出频率从1kHz至10kHz不同规格的交流电能,单机最高容量为500kW,多台并联最高容量为2000kW,工业上被广泛应用于感应加热领域,对金属进行熔炼或对工件进行透热和淬火。在60年代以前,传统感应加热电源是旋转式中频机组。60年代末期,出现了由晶闸管组成的静止式中频加热电源。由于后者具有易于生产、控制方便、低噪声、无需基建投资、高效率、节约铜材等优点,正逐步取代了旋转式中频机组。截至1985年,中国已有近5000台静止式中频加热电源投入运行,分别应用于机械、冶金、交通、造船、军工、轻工等行业。2100433B