反应堆保护系统、专设安全设施及其相关的支持系统,构成核电厂的安全系统,它是核电厂安全纵深防御的第三层。比如一回路辅助系统的化学和容积控制系统、余热排出系统;专设安全设施的安全注射系统、安全壳喷淋系统、安全壳消氢系统、安全壳通风净化系统、安全壳隔离系统和辅助(应急)给水系统。
安全系统的设计,应满足在任何设计基准事故情况下都能执行一切安全功能的要求,即保证反应堆安全停堆、连续的和长期的从反应堆排出余热、防止放射性物质非控制地向环境释放。为了达到这些要求,根据核电厂设计和运行的经验,安全系统的设计必须满足一些专门的设计准则,它们是:单一故障准则、冗余性准则、多样性准则、故障安全准则和可靠性准则。
中文名称 | 反应堆安全系统 | 外文名称 | ReactorSafety System |
---|
反应堆安全系统概述
非能动安全系统
非能动安全系统即安全系统由重力、自然循环和储能等自然规律造成的力量来驱动或投入运行。第三代核电AP1000中广泛采用这种先进的设计理念。例如:
1.1余热排出系统
在反应堆冷却剂系统中,引入一个非能动热交换器,在冷却剂泵失效时,水流自然循环到该热交换器,后者将热量带到安全壳内的换料水箱,传热过程无需动力。
1.2安全注射系统
由两台堆芯补水箱、两台安注箱和一台位于安全壳内的换料水箱组成,连接于反应堆冷却剂环路并充满硼水,注射依靠重力。当正常上充水系统失效时,可应付小泄漏及由于失水事故引起的大泄漏,最终可将反应堆冷却剂系统全部淹没。
1.3非能动安全壳冷却系统
AP1000非能动安全壳冷却系统与传统压水堆的安全壳喷淋系统的主要功能相同,其作用是发生LOCA事故或主蒸汽管破裂事故发生在安全壳内时,排出安全壳内的热量。 非能动安全壳冷却系统以钢安全壳作为传热界面,将空气从外层屏蔽壳入口引入,通过外部环廊到达底部,在空气折流板底部转向180度,进入内部环廊,再沿安全壳内壁向上流动。由于内部环廊空气被加热和水蒸气存在,造成内外环廊空气密度差,形成空气的自然循环,空气最终从屏蔽壳顶部烟囱排出。在安全壳顶部设有可供72小时的冷却水贮存箱,水依靠重力向下流,在钢安全壳弧顶和壳壁外侧形成一层水膜。当安全壳内压力或温度过高时,系统自动开启。由形成的水膜和空气自然循环导出安全壳内的热量,降低安全壳的压力,保证安全壳不受损坏。
高层住宅安装燃气,其厨房应具有良好的自然通风和排烟设施,宜设置燃气泄漏集中报警装置。高层住宅由于层数多,自动化程度高,需要布置的管线较为密集,管道井、电梯空间与地下室空间多为连接空间,燃气管道应避免布...
安全系统设计步骤如下:第一步:定义风险等级在生产装置中引进安全防护手段,其作用是为了将风险减低到企业可接受的水平。任何防护手段都不可能完全消除风险。由于石化生产装置的复杂性导致了潜在风险数目极大,不可...
1●看叶片的直径:我们要根据空间大小选择适合尺寸的吊扇灯,见下表尺寸和直径适合空间大小36寸(木叶的)装好后的直径是96CM6---10平方38寸(铁叶的)装好后的直径是100CM8---12平方42...
以反应堆专设安全系统阀门为研究对象,通过阀门故障数据的搜集,依据阀门用途进行分类,研究了反应堆专设安全系统阀门的故障模式及故障原因,应用故障模式、影响及危害度分析研究了阀门不同故障模式的危害度,提出了反应堆专设安全系统阀门薄弱类型,为提高反应堆专设安全系统阀门可靠性提供研究依据。
新式反应堆有许多新的设计想法,下方只列出最可能实用化的方案,以中子能量作区分:3种热中子反应堆与3种快中子反应堆。其中,超高温反应堆(VHTR)也是一种具潜力的高效产氢方式,可降低燃料电池成本;快反应堆则是能将长半衰期的锕系元素烧掉,减少核废料,并"滋生更多燃料"。这些新式系统在永续性、安全性、可靠性、经济性、抑制核扩散与物理防护上有大量的改善。
超高温反应堆(VHTR)
超高温反应堆(英语:Very high temperature reactor,缩写:VHTR)的设计概念是运用石墨作为减速剂、一次性铀燃料循环、氦气或熔盐作为冷却剂。此设计设想出水口温度可达1000°C,堆芯则可采燃料束或球床式。借由热化学的硫碘循环,反应堆高温可用于产热或产氢制程。超高温反应堆也具有非能动安全系统。
第一个实验性VHTR在南非建成(南非球床模组反应堆),但已于2010年2月停止挹注资金。[1]成本提高与难以突破的技术困难,使投资人与消费者踌躇不前。
超临界水反应堆
超临界水反应堆[注 1](英语:Supercritical water reactor,缩写:SCWR)[2]使用超临界水作为工作流体。SCWR是以轻水反应堆(LWR)为基础,运作于高温高压环境,采取直接、一次性循环。最初的设想是:采取如同沸水反应堆(BWR)的直接循环。但在改用超临界水作为工作流体后,水便为单一相态,类似压水反应堆(PWR)。SCWR的可运作温度比BWR与PWR还高。
由于SCWR具有较高的热效率[注 2]与简单的设计结构,成为倍受关注的新式核反应堆系统。目前SCWR主要目标是降低发电成本。
SCWR是以两种科技为基础进一步发展而成:轻水反应堆与超临界蒸气锅炉。前者是世界上大部分商转中的反应堆类型;后者也是常用的蒸汽锅炉类别。
液相氟化钍反应堆
熔盐反应堆(英语:Molten Salt Reactor,缩写:MSR)是一种反应堆类型,其冷却剂甚至是燃料本身皆是熔盐混和物。这有许多不同细部设计的延伸型,目前也已建造了几个实验原型炉。最初和目前广泛采用的概念,是核燃料溶于氟化物中形成金属盐类,如:四氟化铀(UF4)和四氟化钍(ThF4)。当燃料熔盐流体流入以石墨减速的堆芯内时,会达到临界质量。现行大部分设计是将熔盐燃料均匀分散在石墨基体中,提供低压、高温的冷却方式。
液相氟化钍反应堆(英语:Liquid fluoride thorium reactor,缩写:LFTR)是一种热滋生熔盐反应堆,使用钍熔盐作钍燃料循环,可在常压下达到高运作温度,此新式观念已在世界上引起关注。
气冷式快反应堆
气冷式快反应堆(英语:Gas-cooled fast reactor,缩写:GFR)是种快中子反应堆。利用快中子、封闭式核燃料循环对增殖性材料进行高效核转换,并控制锕系元素核裂变产物。使用出口温度850°C的氦气冷却,送入直接布雷顿循环的封闭循环气涡轮发电。许多新式核燃料能确保运作于高温中,并控制核裂变产物产出:混和陶瓷燃料、先进燃料微粒或锕系化合物陶瓷护套燃料。堆芯燃料会以针状、盘状集束或柱状分布。
钠冷式快反应堆
钠冷式快反应堆(英语:Sodium-cooled fast reactor,缩写:SFR)是以另两种反应堆:液体金属快中子增殖反应堆与一体化快反应堆为基础延伸而来。
SFR的目的是增加铀滋生钚的效率和减少超铀元素同位素的累积。反应堆设计一个未减速的快中子堆芯将长半衰期超铀元素同位素消耗掉,并会在反应堆过热时中断连锁反应,属于一种非能动安全系统。
SFR设计概念是以液态钠冷却、钚铀合金为燃料。燃料装入铁护套中,并于护套层填入液态钠,再组合成燃料束。这种燃料处理方式所遇到的挑战是钠的活性问题,因为钠与水接触会产生爆炸燃烧。然而,使用液态金属取代水作为冷却剂可以减低这种风险。
铅冷式快反应堆(LFR)
铅冷式快反应堆(英语:Lead-cooled fast reactor,缩写:LFR)是一种以液态铅或铅铋共晶冷却的反应堆设计,采封闭式核燃料循环,燃料周期长。单一堆芯功率约50至150兆瓦,模组可达300至400兆瓦,整座电厂则约1200兆瓦。核燃料是增殖性铀与超铀元素的金属或氮化物合金。LFR以自然热对流冷却,冷却剂出口温度约550°C至800°C。也可利用反应堆高温进行热化学反应产氢。
球床反应堆的这种科技增加了反应堆的安全及效率。反应堆的核燃料密度比一般的反应堆低,就算是失去冷却,亦不会出现核芯熔解。反应堆使用惰性气体或接近惰性气体,如氦、氮、二氧化碳作为冷却剂,在高温下直接推动涡轮引擎。由于毋须处理蒸气,系统的热能效率可以得到提高。
正在发展这种技术的国家包括有:美国、南非、荷兰等。中国的华能亦与清华大学合作研究;目前已建有十兆瓦的试验反应堆,并计划于五年内兴建第一座投产发电厂。
本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。