中文名 | 非线性光学晶体 | 外文名 | nonlinear optical crystal |
---|---|---|---|
性 质 | 光学晶体 | 实 例 | LBO晶体等 |
学 科 | 光学 | 应 用 | 激光技术领域 |
CLBO晶体的基本结构与三硼酸铮和三硼酸铯相同,其阴离子基因中平面基团和四面体基团的结合是其大的非线性效应来源。透光范围为175nm~2.75μm,具有对紫外很宽范围良好的透过率,并具有更大的有效非线性系数,具有适中的双折射率,能够实现Nd:YAG激光的倍频、三倍频、四倍频乃至五倍频的位相匹配。
CLBO晶体也可采用熔盐法法生长.能在较短的时间内生长大尺寸的优质单晶。其良好的温度稳定性,大的角度带宽和小的离散角.具有很高的抗光伤阈值,良好的化学稳定性,基本不潮解,但是从目前情况来看,该晶体的长期使用的稳定性尚待考验。
KDP晶体是水溶性晶体之一.是以离子键为主的多键型晶体,但是,在阴离子基团中存在着共价键和氢键,其非线件光学性质,主要起源于这一基团。
KDP晶体在水中有较大的溶解度。通常用溶液流动法和温差流动法来生长。大尺寸KDP晶体采用特殊方法工艺可达到快速生长的目的。由于KDP晶体采用水溶液生长,莫氏硬度2.5,硬度较低.易潮解,所以需采取保护措施。
KDP晶体除了作为频率转换晶体外,还有优良的电光性能,其电光系数大,半波电压低,良好的压电性能等。KDP晶体作为优良的频率转换晶体对1.064μm激光实现二、三、四倍频。对染料激光实现倍频而被广泛应用。又用以制造激光Q开关、电光调制器和同态光阀显示器等。
具有非线性光学效应的晶体。广义指在强光或外场作用下能产生非线性光学效应 的晶体。通常将强光作用下产生的称为非线性光学晶体; 外场作用下产生的称电光、磁光、声光晶体。此外,还 有含共轭体系的有机分子组成的晶体或聚合物。广泛应用的有KH2PO4(KDP)、NH4H2PO4(ADP)、CsH2A5O4(CDA);KTiOPO4、KNbO3、NiNbO3、 Ba2NaNb5O15;BaB2O4(BBO)、LiB3O5(LBO)、NaNO2;GaAs、InSb、InAs、 ZnS等。按状态分为块状、薄膜、纤维、 液晶。利用二阶非线性效应产生的倍频、混频、参量振荡及光参量放大等变频技术,可拓宽激光的波长范围,已应用于核聚变、医疗、水下摄影、光通信、 光测距等方面。
非线性负载是指内含整流设备的负载。在电子线路中,电压与电流不成线性关系,在负载的投入、运行过程中,电压和电流的关系是经常变化的。所谓非线性,就是自变量和变量之间不成线性关系,成曲线或者其他关系。用函数...
线性负载:linear load 当施加可变正弦电压时,其负载阻抗参数(Z)恒定为常数的那种负载。在交流电路中,负载元件有电阻R、电感L和电容C三种,它们在电路中所造成的结果是不相同的。在纯电阻电路中...
【混凝土徐变】是指混凝土在长期应力作用下,其应变随时间而持续增长的特性(注意,弹性变形应变不会随时间而持续增长)。 在长期荷载作用下,结构或材料承受的应力不变,而应变随时间增长的现象称为徐变。一般建筑...
简称LBO晶体。分子式为 LiB3O5,属正交晶系,空间群为Pna2 的一种非线性光学材料。福建物质结 构研究所首次发现。密度2.48g/cm, 莫氏硬度6,具有较宽的透光范围 (0.16~2.6μm),较大的非线性光学 系数,高的光损伤阈值(约为KTP的 4.1倍,KDP的1.83倍,BBO的2.15 倍)及良好的化学稳定性及抗潮解性。 可用于1.06μm激光的二倍频和三倍 频,并可实现Ⅰ类和Ⅱ类相位匹配。用 功率密度为350MW/cm的锁模Nd :YAG激光,样品通光长度为11mm (表面未镀膜),可获得倍频转换效率 高达60%。LBO晶体可制作激光倍频 器和光参量振荡器。用高温溶液法可 生长出光学质量的单晶。
20世纪60年代以来,我国在发展非线性光学晶体材料方面走过了一条从跟踪模仿国外到自主创新的道路,进而作出了举世公认的巨大贡献,发现和研制出一批极为宝贵的和具有特殊功能的新型非线性光学晶体材料,如BBO、LBO等晶体。这些晶体已形成规模化生产,产品畅销世界上许多国家和地区,在国际上产生了巨大和深远的影响,极大地提高了中国科技在世界高科技领域中的地位。
BBO(低温相偏硼酸钡)、LBO(三硼酸锂) 是中国科学院福建物质结构研究所在卢嘉锡教授的组织和指导下,于80年代相继发明的两种新型非线性光学晶体。其中BBO晶体被公认为目前世界上最优秀的二阶非线性光学晶体,其不同凡响的特点之一是具有很宽的调频范围而在紫外波段独领风骚,更重要的是利用它的频率下转换过程,可制成波长从可见到近红外连续可调全固化调谐激光器,这种激光器的出现宣告了染料调谐激光器时代的结束。LBO晶体的温度调谐非临界相位匹配和相位匹配折返现象等特性的开发应用,也已在国内外发展出相应的多种激光器。
创建于1960年的中国科学院福建物质结构研究所是我国结构化学的主要研究基地之一,同时,该所在建所初期就开展晶体功能材料等方面的应用基础和应用研究。探索新型非线性光学晶体是晶体功能材料研究的一个重要方向,不过初期的工作与国内其它单位一样,基本上是跟踪仿制国外已有的晶体材料,虽然曾就Mon (n=6,5,4,3,2)畸变型结构提出非线性光学晶体阴离子基团模型,并在这个理论基础上安排实验研究工作,作为初期探索的重点,但这些研究工作仍没有摆脱国外的思想框架,收获并不明显。
70年代,卢嘉锡考虑到氧八面体畸变无机非线性光学材料在国内外已经进行了大量的研究工作,要在这种结构类型的无机化合物中发现新材料显然十分困难。他强调探索新型非线性光学晶体材料不应受国外学术思想的束缚,跟在外国人后面走,而应该走自主创新的道路。
1979年,研究人员采用无机和有机相结合的思路,从有机苯环共轭π电子离域授受将产生偶极矩和非线性光学性能的原理出发,考虑在无机化合物中寻找具有共轭π键类苯环结构的物质,同时参考前苏联晶体化学家鲍基 (г.ъ. ъокий)等人关于硼酸盐晶体化学分类的综述性论文,发现偏硼酸盐具有硼氧环(B3O6)阴离子基团可能满足这些结构要求,可作为探索新型非线性光学材料的研究重点。
在此基础上,经过反复试验,终于合成出具有很高倍频系数(为ADP的4~5倍)的粉末样品。当时国外文献报道的结构数据显示,无论是高温相还是低温相的偏硼酸钡晶体都具有中心对称结构,有“心”结构的物质不可能成为倍频材料。于是研究人员设想用加入钠离子的办法,使其晶格发生畸变,以破坏其中心对称的结构。为此在实验中加入氧化钠,降低烧结温度。在发现所合成的粉末样品具有可观的倍频效应后,便发表文章宣布已找到一种新型非线性光学材料——“偏硼酸钡钠”。随后有关相图和物相分析表明该化合物中不存在钠离子,确定所发现的物质是低温相偏硼酸钡。而结构分析证实了低温相的偏硼酸钡属于无中心对称结构,纠正了文献报道中的错误。
与此同时,晶体生长方面采用熔盐仔晶法培养出直径为76×15mm (中心后度)的大块单晶体,经测定其非线性光学性能,确定了BBO是优质的紫外倍频晶体。在晶体结构测定和性能测试完成的基础上用阴离子基团理论模型计算了BBO的倍频系数,通过马德隆常数的调整得到与实验基本符合的结果。
BBO晶体被誉为中国人按照自己的科学思想创造出来的第一块“中国牌”晶体。美国非线性光学晶体材料科学界在比较了 “新中国发现BBO晶体的研究小组和美国的研究情况”之后,一些权威专家曾为 “非线性光学材料研究方面的大部分新思想不是发源于美国”而感到担忧。
低温相偏硼酸钡晶体的发现和研制成功,开拓了硼酸盐非线性光学材料领域,在此基础上,福建物构所经过几年的努力而发现了另一块新型非线性光学晶体三硼酸锂(LBO)。研究发现,该晶体具有两个很有实用价值的特殊性质可供开发应用: 一是可在两个 (类) 主轴方向实现温度调谐非临界相位匹配(离散角≈0°),利用这一特性物构所与中科院物理所合作研究出实用型绿光激光器和全固化红光激光器; 二是具有相位匹配折返现象特性,物构所已利用这一特性,设计和研制出多波长光参量激光器产品,并成为 “863”十周年成果展览的重要展品之一。
作为科研与开发方面的成果,BBO曾获中国科学院科技进步奖特等奖(1984年),首届全国发明展览会发明一等奖(1985年),第三世界科学院化学奖(1988年),首届陈嘉庚物质科学奖(1988年);其开发应用成果获中国科学院科技进步奖二等奖(1988年),作为高技术工业化晶体产品,曾入选美国 “激光与光电子”杂志编委会和编辑顾问委员会组织评选的“十大新技术尖端产品”(1987年),获美国 《激光集锦》杂志授予的 “工业成就奖”(1990年);其专利获中国发明专利金奖(1993年)。
LBO曾获中国科学院科技进步奖一等奖(1990年),国家发明奖一等奖,并在中国、美国和日本拥有授权专利。其产品曾入选美国 《激光与光电子》杂志编委会和编辑顾问委员会组织评选的1989年度激光与光电子技术领域十大尖端产品之列。利用LBO晶体开发出来的 “高效率宽调谐激光器件”获中国科学院科技进步奖一等奖,“多波长光参量激光器”获中国科学院发明奖一等奖。
为了适应市场的需要,在中国科学院的支持下,物构所从80年代后期就致力于将BBO、LBO晶体的生长发展为规模生产,并于1990年成立所办的福晶公司,该公司以两个晶体为拳头产品,迅速形成国际销售网络,产品销往世界上30多个国家和地区,两晶体创汇额累计已达数千万美元。该公司是我国为数不多、很有发展前景的外向型高科技企业。
目前LBO晶体的应用开发方兴未艾,美国浓缩铀公司激光同位素分离 (AVLIS)研究计划正在用LBO晶体取代KTP晶体产生大于100瓦的绿色激光输出,以取代大型氩离子激光器进行铀分离。他们曾到福建物构所商谈专利使用事宜和长期供应大批量LBO晶体器件的可能性。据初步研究结果,LBO晶体的使用寿命是KTP的3倍。为此他们提出每年向物构所订购10,000片大尺寸LBO晶体的意向。这为LBO晶体的市场开拓提供了良好的前景,其经济效益可望超过亿元。
继BBO、LBO之后,国内外又相继发现了CBO、CLBO和结构上更为复杂的多聚硼氧化物非线性光学晶体如KBBF、SBBO类晶体等,大大促进了非线性光学晶体材料和激光器件的研究与发展。诺贝尔化学奖获得者李远哲、印度科学院院长拉奥、美国晶体生长协会主席费杰尔逊和美国加州大学教授沈元壤等,在参观福建物构所之后,都十分赞赏卢嘉锡为该所制订的科研方向和学术指导思想。 2100433B
根据双原子谐振子模型近似,提出了估算分子晶体材料红外吸收边的理论方法,然后利用超分子量子化学从头算,计算了L-精氨酸一水磷酸盐(LAP)晶体和氘化L-精氨酸一水磷酸盐(d-LAP)晶体单元超分子的红外振动光谱,其中LAP晶体超分子计算值与晶体红外光谱实验值吻合,表明超分子计算能有效地模拟无机-有机杂化非线性光学晶体的红外振动光谱。在归属了超分子重要基频线后,分析其红外强度,并估算了泛频频率。根据我们提出的方法,估算了这两种晶体的红外吸收边,结果与实验值较吻合。表明我们建议的理论方法是合理的。此外,通过计算表明,如果非线性光学晶体材料的红外吸收边是由与活泼H有关的伸缩振动泛频频率决定,那么活泼H的氘化是一种改善红外吸收边的有效途径。
应用自位相调制和Z扫描方法对茉莉花茶乙醇溶液的光学非线性特性进行了实验研究。测量了介质的非线性折射率n2=-7.96×10-6esu,非线性响应时间约0.75s,茉莉花茶乙醇溶液的光学非线性主要来源于介质的热吸收效应
激光光源的波长拓展很大程度上依赖于频率转换器件材料——非线性光学晶体的变频能力。随着激光在紫外和深紫外波段应用的日益重要,如何设计合成性能更优的非线性光学材料是当前研究的重点和热点。
中国科学院科学家团队——福建物质结构研究所光电材料化学与物理重点实验室叶宁课题组在国家杰出青年基金、中科院B类战略性先导科技专项和助理研究员罗敏主持的海西研究院“春苗”人才专项等资助下,以非线性光学晶体Sr2Be2B2O7(SBBO)结构模型为基础,利用分子工程的方法成功设计了首例铅/锡氟硼酸盐化合物MB2O3F2(M=Pb,Sn)。相比于SBBO中存在的刚性[Be6B6O15]∞双层来说,MB2O3F2具有灵活的二维[B6O12F6]∞单层,克服了SBBO结构的不稳定性问题(图1)。此外,虽然MB2O3F2(M=Pb, Sn)是同构的,并且都含有立体化学活性的孤对阳离子,但它们却表现出截然相反的宏观倍频效应。通过与中科院理化技术研究所林哲帅课题组合作,利用第一性原理的计算方法揭示了两个化合物倍频的差异主要是由于Pb和Sn的倍频活性轨道各向异性的不同,它们分别对PbB2O3F2和SnB2O3F2的倍频效应产生了建设性和破坏性的影响(图2)。相关研究成果发表在《美国化学会志》上(Journal of the American Chemical Society, 2018, 140(22), 6814-6817)。
此外,该研究团队此前在紫外、深紫外NLO材料的设计、合成、晶体生长和非线性性能研究方面也取得系列研究进展,相关成果发表于J. Am. Chem. Soc., 2018,140, 3884;Chem. Commun., 2018, 54, 1445;Chem. Commun., 2017, 53, 9398;J. Mater. Chem. C, 2017,5, 8758;Chem. Mater 2017, 2, 896;Chem. Mater. 2016, 28, 9122;Chem. Mater. 2016, 28, 2301;Chem. Mater. 2015, 27, 7520。
图1 从SBBO到MBOF的结构演化 图2 在PBOF和SBOF带隙附近的电子电荷密度
(来源:中国科学院)
我不(大冰作品。十个月狂销200万册,不容错过的奇书!)
作者:大冰 著,博集天卷 出品
卤化物单晶分为氟化物单晶,溴、氯、碘的化合物单晶,铊的卤化物单晶。氟化物单晶在紫外、可见和红外波段光谱区均有较高的透过率、低折射率及低光反射系数;缺点是膨胀系数大、热导率小、抗冲击性能差。溴、氯、碘的化合物单晶能透过很宽的红外波段,其熔点低,易于制成大尺寸单晶;缺点是易潮解、硬度低、力学性能差。铊的卤化物单晶也具有很宽的红外光谱透过波段,微溶于水,是一种在较低温度下使用的探测器窗口和透镜材料;缺点是有冷流变性,易受热腐蚀,有毒性。
氧化物单晶主要有蓝宝石(Al2O3)、水晶(SiO2)、氧化镁(MgO)和金红石(TiO2)。与卤化物单晶相比,其熔点高、化学稳定性好,在可见和近红外光谱区透过性能良好。用于制造从紫外到红外光谱区的各种光学元件。
半导体单晶有单质晶体(如锗单晶、硅单晶),Ⅱ-Ⅵ族半导体单晶,Ⅲ-Ⅴ族半导体单晶和金刚石。金刚石是光谱透过波段最长的晶体,可延长到远红外区,并具有较高的熔点、高硬度、优良的物理性能和化学稳定性。半导体单晶可用作红外窗口材料、红外滤光片及其他光学元件。
Y与X之间存在线性关系,但是Y和参数
对于非线性回归分析,只有参数的线性回归分析才是重要的,因为变量的非线性可通过适当的重新定义来解决 。