中文名 | 粉末液相烧结 | 外文名 | liquid phase sintering of powder |
---|
类型根据烧结过程中固相在液相中的溶解度不同,液相烧结可分为3种类型。(1)固相不溶于液相或溶解度很小,称为互不溶系液相烧结。如w-Cu、w-Ag等假合金以及A12O3-Cr、Al2O3一Cr-Co—Ni、A12O3一Cr—W、BeO一Ni等氧化物-金属陶瓷材料的烧结。(2)固相在液相中有一定的溶解度,在烧结保温期间,液相始终存在,称为稳定液相烧结。如Cu—Pb、w—Cu—Ni、WC一Co、TiN一Ni等材料的烧结。(3)因液相量有限,又因固相大量溶入而形成固溶体或化合物,使得在烧结保温后期液相消失,这类液相烧结称为瞬时液相烧结。如Fe—Cu(<10%)、Fe—Ni—Al、Ag—Ni、Cu—Sn等混合粉末材料的烧结。
条件液相烧结能否顺利完成,达到完全致密化,主要决定于同液相性质有关的3个基本条件:
(1)液相对固相颗粒表面的润湿性要好,其润湿角口<90,最好是接近于零度。任何有利于提高液相对固相润湿性的措施都有利于液相烧结。
(2)固相在液相中有一定的溶解度,而液相在固相中的溶解度很小,或者不溶解。
(3)液相要有一定的数量。一般以冷却时能填满固相颗粒间的间隙为限。通常以20%~50%(体积分数)为宜。
致密化过程大致可分为3个阶段。
(1)液相生成和颗粒重排。当液相生成后,因液相润湿固相,并渗入颗粒间隙,如果液相量足够,固相颗粒将完全被液相包围而近似于悬浮状态,在液相表面张力作用下发生位移、调整位置,从而达到最紧密的排列。在这一阶段,烧结体密度增加迅速。
(2)固相溶解和析出。由于固相颗粒大小不同、表面形状不规整、颗粒表面备部位的曲率不同,溶解于液相的平衡浓度不相等,由浓差引起颗粒之间和颗粒不同部位之间的物质迁移也就不一致。小颗粒或颗粒表面曲率大的部位溶解较多;另一方面,溶解的物质又在大颗粒表面或其有负曲率的部位析出。结果是固相颗粒外形逐渐趋于球形或其他规则形状,小颗粒逐渐缩小或消失,大颗粒长大,颗粒更加靠拢。但因在此阶段充分进行之前,烧结体内气孔已基本消失,颗粒间距已很小,故致密化速度显著减慢。
(3)固相骨架形成。液相烧结经过上述两阶段后,固相颗粒相互靠拢,颗粒间彼此粘结形成骨架,剩余的液相充填于骨架的间隙。此时以固相烧结为主,致密化速度显著减慢,烧结体密度基本不变。 2100433B
喷涂方式可采用手动、自动或手动+自动。喷料100%是固体粉末,游离的粉末可以回收利用,涂料回收利用率可达98%。悬吊运输系统,自动化程度高。涂层微孔少,防腐性能好,并可一次进行厚膜喷涂。
一般粉末状的反应比较迅速。液态的成本比较高。
粉末的烧结 定义 烧结:压坯置于基体金属熔点以下温度(约 0.7~0.8T ,单位 K)加热保温, 粉末颗粒之间产生原子扩散、固溶、化合和熔接,致使压坯收缩并强化,这一过 程称为烧结。 烧结对粉末冶金材料和制品的性能有着决定性的影响。烧结的结果是粉末颗 粒之间发生粘接,烧结体的强度增加,密度提高。在烧结过程中,压坯要经过一 系列的物理化学变化。开始是水分或有机物的蒸发或挥发,吸附气体的排除,应 力的消除,粉末颗粒表面氧化物的还原;继之是原子间发生扩散,粘性流动和塑 性流动,颗粒间的接触面增大,发生再结晶和晶粒长大等。出现液相时,还可能 有固相的溶解和重结晶。这些过程彼此之间并无明显的界限,而是穿插进行,互 相重叠,互相影响。加之一些其它烧结条件,使整个烧结过程变得很复杂。用粉 末烧结的方法可以制得各种纯金属、合金、化合物以及复合材料。 在烧结过程中,固体颗粒表面能的减小是烧结的“推动力”,
试验以页岩烧结砖的原料组分及物理特性为基础,以农业秸秆废料作为添加剂,按照一定的配合比和成型工艺,研制开发节能保温页岩烧结砌块。在试验过程中对孔隙率和抗压强度等多项指标进行测试,结果表明:样本各项性能均能达到《烧结普通砖》GB5101—2003相关要求。并进一步探讨了秸秆粉末的含量对砌块孔隙率、抗压强度等特性的影响,为后续试验的开展和深入研究提供了基础数据支持。
《冶金学名词》 (第二版)。 2100433B
当压坯加热到烧结温度时出现液相,在烧结温度保温时,由于相互扩散,液相消失的烧结过程。
解释
粉末蓝的得名来自洗衣店用来漂染衣物的物质大青。粉末蓝英语中常常被混淆,可能因为名字的关系。
美国摇滚乐队想像发布了歌曲名为《粉末蓝》于他们的系列《十二大黄金国》中。
另一队摇滚乐队自负于1995年发布了歌曲名为《粉末蓝》于他们的仿日本歌曲系列褪色中。
— 颜色调配 —
网页颜色 #003399
RGBN (r, g, b) (0, 51, 153)
CMYKN (c, m, y, k) (100, 67, 0, 40)
HSV (h, s, v) (220°, 100%, 60%)2100433B