1998年,经全国科学技术名词审定委员会审定发布。
《电气工程名词》第一版。 2100433B
1.8米乘1.6米转换梁的拆除模板时间能按规范规定达到百分之75就拆除
在安装文件里面有一个钢筋GGJ2009转换工具,可以把GGJ10.0的文件转换为2009的,但是转换后会存在工程量的差异
时间继电器延时转换分通电延时转换和断电延时转换。断电延时转换就是当继电器线圈通电时常开或常闭,瞬间闭合或断开,继电器线圈断电后,开始延时,原来瞬时闭合或断开的触点,仍然保持闭合或断开的状态。延时结束后...
关于自动转换开关 ATSE 时间要求 摘要阐述了自动转换开关 ATSE的定义以及总动作时间和总动作时间设定 关键词 自动转换开关 总动作时间 时间设定 为保证重要负荷供电的连续性, 双电源自动转换开关 ATSE以其先进性 和可靠性得到越来越多的应用。 自动转换开关电器 ATSE是由一个(或几个)转换开关电器和其它必需的电 器组成,用于监测电源电路,并将一个或几个电源自动转换至另一个电源的电器。 自动转化开关分为两类, 即 PC级和 CB级。PC级:只完成双电源自动转换的功 能,不具备短路电流分断(仅能接通、承载)的功能。 CB级:既完成双电源自 动转换的功能,又具有短路电流保护(能接通并分断)的功能。 一、自动转换开关 ATSE的总动作时间分类 对自动转换开关 ATSE时间的要求是与备用电源类型、 相应负载类别及开关 自身性能相关联的。 一般 ATSE都有两个转换时间, 特意引入延时时间和
时间到电压转换(TVC)技术已经广泛应用于雷达、通信、信号测量等领域.在此设计一套实用的电路系统应用于超声海流计系统,该电路系统主要由1个时序产生电路,1个时间电压转换电路以及1个模拟到数字电路组成.理论分析表明,通过此方法测量脉冲到达时间间隔可以获得亚纳秒级时间分辨力.文中通过计算机辅助设计软件ORCAD仿真分析验证,该电路具有结构简单,精度高的特点.
目前有两种类型光分路器可以满足分光的需要:一种是传统光无源器件厂家利用传统的拉锥耦合器工艺生产的熔融拉锥式光纤分路器(Fused Fiber Splitter),一种是基于光学集成技术生产的平面光波导分路器(PLC Splitter),这两种器件各有优点,用户可根据使用场合和需求的不同,合理选用这两种不同类型的分光器件,以下对两种器件作简单介绍,供参考。
熔融拉锥技术是将两根或多根光纤捆在一起,然后在拉锥机上熔融拉伸,并实时监控分光比的变化,分光比达到要求后结束熔融拉伸,其中一端保留一根光纤(其余剪掉)作为输入端,另一端则作多路输出端。目前成熟拉锥工艺一次只能拉1×4以下。1×4以上器件,则用多个1×2连接在一起。再整体封装在分路器盒中。
这种器件主要优点有(1)拉锥耦合器已有二十多年的历史和经验, 许多设备和工艺只需沿用而已, 开发经费只有PLC的几十分之一甚至几百分之一(2)原材料只有很容易获得的石英基板, 光纤, 热缩管, 不锈钢管和少些胶, 总共也不超过一美元. 而机器和仪器的投资折旧费用更少,1×2、1×4等低通道分路器成本低。(3)分光比可以根据需要实时监控,可以制作不等分分路器。
主要缺点有(1)损耗对光波长敏感,一般要根据波长选用器件,这在三网合一使用过程是致命缺陷,因为在三网合一传输的光信号有1310nm、1490nm、1550nm等多种波长信号。
(2)均匀性较差,1X4标称最大相差1.5dB左右,1×8以上相差更大,不能确保均匀分光,可能影响整体传输距离。(3)插入损耗随温度变化变化量大(TDL)(4)多路分路器(如1×16、1×32)体积比较大,可靠性也会降低,安装空间受到限制。
平面光波导技术是用半导体工艺制作光波导分支器件,分路的功能在芯片上完成,可以在一只芯片上实现多达1X32以上分路,然后,在芯片两端分别耦合封装输入端和输出端多通道光纤阵列。
裸纤式PLC光分路器图片
裸纤式PLC光分路器
天馈线系统分路系统
一般情况微波通信都是几个波导公用一套天馈线系统。公用系统即为实施这一功能的传输系统。分路系统主要由环形器、分路滤波器、终端负荷和硬波导等器件组成。分路滤波器一般安装在机架内。图7(a)是收信分路系统示意图。天线收到频率为f1、f2、f3、f4的信号,送入分路系统输入端,信号经第一个环形器时,分路滤波器让本机架的接收信号频率f1通过,进入接收机。其余三个波导的信号被反射回去,经过第二个环形器后,第二个波导分路滤波器允许它的本机架的接收频率f2通过,其他两个频率又被反射回去。这样四个信号分别进入各自的机架中去。图7(b)为发信分路系统示意图。其工作原理与收信分路系统相同。