分束器是可将一束光分成两束光或多束光的光学装置,它是大多数干涉仪的关键部分。通常是由金属膜或介质膜构成。
最常见的形状是立方体,由两个三角形玻璃棱镜制成,它们使用聚酯,环氧树脂或聚氨酯类粘合剂在基体上胶合在一起。调整树脂层的厚度,使得通过一个“端口”(即,立方体的面)入射的光的(一定波长)的一半被反射,另一半由于全部内反射而被继续传输。 诸如沃拉斯顿棱镜的偏振分束器使用双折射材料,将光分成不同极化的光束。
另一种设计是使用半镀银镜,一片玻璃或塑料,透明薄的金属涂层,现在通常由铝蒸气沉积铝。 控制沉积物的厚度,使得以45度角入射并且不被涂层吸收的光的部分(通常为一半)被透射,其余部分被反射。 用于摄影的非常薄的半镀银镜子通常被称为防护薄膜镜。 为了减少由于反射涂层的吸收引起的光的损失,已经使用了所谓的“瑞士干酪”分束镜。 最初,这些是穿孔的高度抛光的金属片,以获得所需的反射与透射比。 之后,将金属溅到玻璃上,形成不连续的涂层,或者通过化学或机械作用去除连续涂层的小区域以产生非常字面上的“半镀银”表面。
代替金属涂层,可以使用二向色光学涂层。 根据其特性,反射与透射的比例将随着入射光的波长的函数而变化。 分光镜用于一些椭圆反射聚光灯,以分散不需要的红外线(热)辐射,以及激光器结构中的输出耦合器。
第三种分束器是二向色镜像棱镜组件,其使用二向色光学涂层将入射光束分成多个光谱不同的输出光束。 这样的设备被用于三皮管彩色电视摄像机和三色彩色印片法电影摄影机。 它目前用于现代三CCD相机。 光学相似的系统反向用作三LCD投影机中的光束组合器,其中来自三个单独的单色LCD显示器的光被组合成用于投影的单个全色图像。
用于PON网络的单模光纤的分束器使用单模行为来分割光束。分离器通过将两根光纤“拼接”为X。
用一个镜头和一个曝光点来拍摄立体影像对的镜子或棱镜的排列,有时被称为“射束分离器”,但这是一个用词不当的现象,因为它们实际上是一对潜望镜,折射出的光线已经不是重合的了。在一些非常罕见的立体摄影附件、镜子或棱镜块与束器执行相反的功能相似,叠加的主题从两个不同角度视图通过颜色过滤器允许直接生产浮雕的3 d图像,或通过迅速交替百叶窗记录顺序字段3D视频。
由一侧的反射介质涂层的玻璃板组成的分束器,取决于入射侧的相移为0或π(见图)。发射波没有相移。 从反射侧进入的反射波(红色)被相移π,而从玻璃侧(蓝色)进入的反射波没有相移。 这是由于菲涅耳方程,根据该方程,只有当穿过低折射率材料的光以高折射率的材料反射时,反射才会产生相移。 这是在空气向反射器过渡的情况,但不是从玻璃到反射器的过渡(考虑到反射器的折射率在玻璃和空气的折射率之间)。
这不适用于导电(金属)涂层的部分反射,其中所有路径(反射和透射)都发生其他相移。
考虑一个经典的无损分束器,其电场在其两个输入处都有事件发生。 两个输出域Ec和Ed与输入通过线性相关
其中2×2元素是分束器矩阵。 r和t是通过分束器的特定路径的反射率和透射率,该路径由下标表示。
假设分束器不从光束中去除能量,则总输出能量可以等于总输入能量的读数
要求这种节能带来反射率和透射率之间的关系
并且
其中“
当
其中替换形式
它遵循
现在已经确定了描述无损分束器的约束,我们可以重写我们的初始表达式
分束器已被用于量子理论和相对论等物理领域的思想实验和现实世界的实验。 这些包括:
(1)1851年的Fizeau实验测量水中光的速度;
(2)1887年的迈克尔逊 - 莫利实验测量(假设)发光的醚对光速的影响;
(3)1935年的哈马尔实验反驳了代顿米勒对重复迈克尔逊 - 莫利实验的积极成果的主张;
(4)1932年的肯尼迪 - 索恩迪克实验测试了光速和测量仪器速度的独立性;
(5)贝尔测试实验(从大约1972年)演示量子纠缠的后果,并排除局部隐性变量理论;
(6)惠勒的1978年,1984年等的延迟选择实验,以测试什么使光子作为波;
(7)测试Penrose解释的FELIX实验(2000年提出)量子叠加取决于时空曲率;
(8)Mach-Zehnder干涉仪用于各种实验,包括Elitzur-Vaidman炸弹测试仪,包括无相关测量;在其他方面在量子计算领域。
2000年,Knill,Laflamme和Milburn(KLM协议)证明,可以用光束分离器,移相器,光电探测器和单光子源来创建通用量子计算机。 在该协议中形成量子位的状态是两种模式的一个光子状态,即两种模式的占空比表示(Fock状态)中的状态|01>和|10>。 使用这些资源,可以实现任何单个量子位门和2-量子位概率门。 光束分离器是该方案中的重要组成部分,因为它是唯一产生Fock状态之间的分束器。2100433B
定向耦合器由多个光子晶体单模波导平行、邻近放置构成。在输入光场对称入射时,根据自映像原理数值分析了光在其中的传播行为。基于此结构,以3通道为例,设计了超微多路光分束器,仅仅通过对称地改变耦合区中两个介质柱的折射率,使光场在横向发生重新分布,实现了输出能量的均分或自由分配。这种调制方法简单且输出效率更高。
分束器在集成光学等领域具有重要应用价值。随着对分束比、衍射效率及光束光强均匀性的不断提高以及工艺水平的改善,相继提出了各种变异型位相光栅。本文讨论了一种双层结构的光栅分束器的设计方法。双光栅分别蚀刻在介质层的两面。
光纤分束器就是将一根光纤内的波长、能量、偏振等特性进行重新分配到不同光纤内的一种器件。
分能量的一般叫光纤分路器或者光纤耦合器,分波长是波分复用器,分偏振的是偏振分束器等等。
光纤分束器是对光信号实现分路、合路和分配的无源器件,是波分复用、光纤局域网、光线有线电视网以及某些测量仪表中不可缺少的光学器件。
光纤分束器是对光信号实现分路、合路和分配的无源器件,是波分复用、光纤局域网、光线有线电视网以及某些测量仪表中不可缺少的光学器件。
在光学玻璃表面镀上一层或多层薄膜,这时一束光投射到镀膜玻璃上后,通过反射和折射,光束就被分为两束或更多束,这种镀膜玻璃就叫做分束镜。平面分束镜
分束镜主要用于将入射光束分成具有一定光强比的透射与反射两束光。有固定分束比分束镜和可变分束比分束镜两类。可变分束比分束镜又有阶跃和连续暂变之分。
分束镜通常总是倾斜着使用,它能方便地把入射光分离成反射光和透射光两部分。如果反射光和透射光有不同的光谱成分,或者说有不同的颜色,这种分束镜通常称作为二向色镜。如果把一束光分成光谱成分相同的两束光,即在一定的波长区域内,如可见光区内,对各波长具有相同的透射率和反射率比,因而反射光和透射光呈中性,这种分束镜称为中性分束镜。透射和反射比为50/50的中性分数镜最为常用。
常用的中性分束镜有两种结构,一种是把膜层镀在透明的平板上,另一种是把膜层镀在45°的直角棱镜斜面上,再胶合一个同样形状的棱镜,构成胶合立方体。平板分束镜,由于不可避免的象散,通常应用在中、低级光学装置上。对于性能要求较高的光学系统,可以采用棱镜分束镜。胶合立方体分束镜(也称作分光棱镜)的优点是在仪器中装调方便,而且由于膜层不是暴露在空气中,不易损坏和腐蚀,因而对膜层材料的机械、化学稳定性要求较低。但是胶合立方体分束镜的偏正效应较大也是显而易见的。
在一定的波长区域内的反射率几乎不变的薄膜或薄膜组合,都可以起中性分束的作用。常用的有金属分束镜和介质分束镜两类。