风电场电力汇集系统,亦称“风电场集电系统”。汇集风力发电机组电能并输送到风电场升压变电站或用电负荷的电力连接系统。可根据电压等级分类,如10千伏集电系统、35千伏集电系统等。
指的是当前风场所有风力发电机组发出的总电功率,也就是当前风场向电网输送的有功功率。
从风机出来,有一个箱变,一般采用690V转11000V的,然后各集电线路集中到风电场内主变,主变再由11000V转送到外网集电线路上。主变配套有无功补偿、操作控制、二次保护等设备。
10兆瓦=万千瓦10MW=万千瓦49.5MW等于4.95万千瓦不同驱动链模型的比较变速风力发电机组系统变速风力发电机组系统结构变速风力发电机组系统特性变速风力发电机组对驱动链模型的影响
1 风电场建设程序与风电场工程施工 按照“风电场开发研讨班”的课程安排,风电场的建设施工,重点讲授以下五个方面的内容: 一、风电场的建设程序 二、风电场的施工前期准备 三、风电场的施工管理 四、风电机组的运输、安装、调试 五、风电机组的试运行与验收 第一章:风电场的建设程序 为了规范中国的基本建设市场,国家计委于一九九六年先后颁布了《关于实行建设项目法人责 任制的暂行规定》和《国家重点项目管理办法》两个重要法规文件。要求在建筑领域全面推行工程 项目法人责任制、投标招标制、合同管理制和工程建设监理制等四项基本制度。并以法规形式规定 了基本建设程序。中国的项目建设程序是从项目业主管理的角度划分的。 通常,我们把工程项目建设周期划分为四个阶段:工程项目策划和决策阶段,工程项目准备阶 段,工程项目实施阶段,工程项目竣工验收和总结评价阶段。详见图 1—1。 1、工程项目策划和决策阶段 这一阶段的主
1 风电场建设程序与风电场工程施工 按照“风电场开发研讨班”的课程安排,风电场的建设施工,重点讲授以下五个方 面的内容: 一、风电场的建设程序 二、风电场的施工前期准备 三、风电场的施工管理 四、风电机组的运输、安装、调试 五、风电机组的试运行与验收 第一章:风电场的建设程序 为了规范中国的基本建设市场,国家计委于一九九六年先后颁布了《关于实行建设 项目法人责任制的暂行规定》和《国家重点项目管理办法》两个重要法规文件。要求在 建筑领域全面推行工程项目法人责任制、投标招标制、合同管理制和工程建设监理制等 四项基本制度。并以法规形式规定了基本建设程序。中国的项目建设程序是从项目业主 管理的角度划分的。 通常,我们把工程项目建设周期划分为四个阶段:工程项目策划和决策阶段,工程 项目准备阶段,工程项目实施阶段,工程项目竣工验收和总结评价阶段。详见图 1—1。 1、工程项目策划和决策阶段 这一阶段
风电出力受自然天气条件的影响很大,当系统中含有大规模风电场时,确定性潮流无法全而反映系统稳态运行情况,由前述随机潮流的概念可知,系统随机潮流分析是解决该问题的有效方法。国内外学者对含风电场的电力系统随机潮流研究早已有涉及。从现有研究成果来看,系统随机潮流模型算法与常规系统基本一致。事实上,风电这一非常规随机因素引入后,进行系统随机潮流分析需要解决的关键问题是模型中如何计及风电场出力随机性。此外,由于风电出力随机性区别于常规系统中一般随机性因素而具有一定特殊性,对此计算中如何处理亦是含风电场随机潮流分析需要进行深入研究的问题。现主要从上述两个方而综述含风电场的随机潮流方法,具体如下。
蒙特卡罗抽样法是进行风电场出力随机性分析最直接简单的方法,如有文献均采用蒙特卡罗法分析风电场出力的随机性,并采用模拟法计算含风电场的电力系统随机潮流,比较分析了风电接入对系统节点电压和支路潮流的影响。
为采用计算速度相对较快的解析法计算含风电场随机潮流,有文献分别提出了风电出力随机性不同处理方法 。
(1)随机潮流模型中风电场潮流计算模型问题。现有含风电场随机潮流研究时,大多数文献假设风场与外界系统按恒功率因数发生无功功率交换,即将风电场等效为PQ节点,该处理方式与系统实际并不完全相符,为此有文献将风场风机分为恒速}巨频异步发电机、恒功率因数控制方式的变速恒频双馈机、恒压控制方式的变速恒频双馈机三种类型,分别建立对应无功概率模型,采用半不变量和Gram-Charlier级数展开法研究了风电场不同控制方式下系统的随机潮流 。
(2)风场间出力相关性问题。随机潮流计算中往往为了简化模型、加快计算速度而假设系统各节点的注入功率相互独立。事实上,这一假设与常规系统实际运行已经存在一定差异,而风电并网将进一步加大该差异。因为多个风电场地理位置相对靠近而使得其基本处于同一风速带,从而使得各风场风速具有较强的相关性,各风场出力也具有较强的相关性。因此,随机潮流分析时应考虑风速相关性以更准确地评估风场并网后系统静态运行特性。不少学者对此进行了探讨。
(3)风场内有功无功出力相关性问题。有文献提出含风电场的电力系统随机潮流分析时,应计及风电场有功、无功相关性尤其是采用异步发电机的风电场,该文将风电场有功无功同其灵敏度矩阵中对应的权重元素组合为一个随机变量,采用半不变量法进行随机潮流分析,研究表明计及风场有功无功相关性后计算结果更准确,更接近系统电压或潮流的真实分布情况。
由上述分析可知,目前含风电场的电力系统随机潮流基本模型算法已建立。但是,当前含风电系统随机潮流研究大多均基于风速服从Weibull分布的基本假设。事实上,含风电系统的随机潮流计算应根据分析周期的不同分为以下两种:中长期随机潮流问题;短期随机潮流问题。其中,中长期随机潮流计算时一般假定风速服从Weibull分布,考虑风电出力从零到满发随机波动,其分析结果适用于系统长期或中长期评估。而短期随机潮流计算时一般考虑风电出力值为预测结果加上随机波动的预测误差,即系统随机变量为风功率预测误差,此时的结果适用于系统短期或在线评估分析。基于上述随机潮流问题的划分,给出几个值得深入研究的相关问题,以供参考。具体如下:
(1)含大规模风电并网的中长期随机潮流解析化方法研究。现有含风电场的随机潮流解析方法,虽然其实用性较强,但对于风电并网规模较大且需考虑风电出力波动范围较大的中长期分析这一特殊场合,可能存在不适之处,具体分别表现模型与算法两个方而。首先,现有解析方法中大多采用最常用的线性化交流模型,其精度能否适应上述特殊场合有待深入研究。其次,在算法方而,现有解析算法以基于半不变量和级数展开法最为常用,其中级数大多为A型Gram-Charlier级数或Edgeworth级数。而数学界研究已表明,当随机变量的三阶或四阶矩超出一定范围时,其逼近所得概率密度函数可能出现负值,导致结果不满足基本概率公理。因此,将此方法直接用于上述场合分析值得探究。
(2)计及动态调度策略的中长期随机潮流方法研究。在现有随机潮流文献中,亦即中长期随机潮流研究,为简化分析或受模型、方法限制,负荷或间歇性电源出力波动时均没有考虑系统中各机组出力调整,而是将其视为不变的恒量,完全依靠单一的平衡节点实现功率平衡,这显然不相符合电网实际运行。事实上,电网运行时会根据负荷水平的不同及时调整系统发电计划、重新安排机组出力(尤其是承担峰荷的机组),以力求系统运行经济性。此外,一方而随着智能电网建设工作的深入开展,系统的互动性、兼容性、经济性等特征愈发明显。这在一定程度上也预示着未来电网分析工作必须而对诸多随机因素并恰当处理系统在此环境下运行状态的动态调整问题,从而使系统分析方法满足实际需求。另一方而,我国风电“建设大基地、融入大电网”的发展路线,也进一步突显了计及动态调度策略是系统分析的必然要求。因此,研究计及动态调度策略的中长期随机潮流分析方法具有重要意义,应作为后续研究的重要方向。
(3)短期随机潮流方法研究。由于短期随机潮流研究时一般考虑功率波动范围相对较小,风电出力随机变量取决于风功率预测误差,因而当前含风电场的电力系统随机潮流计算模型与求解方法基本适用。然而,难点问题是如何建立准确的风电功率预测误差分布模型,用于描述风电出力短期随机波动性。因此,研究一种考虑风电功率预测误差分布的随机潮流实用方法是短期随机潮流研究的重点。
近年来,在能源短缺和环境污染的双重压力下,风电得到了高速发展。风电本身波动性和间歇性的特点使其并网对系统的安全可靠运行构成一定的威胁。因此开展风电场接入系统的相关研究是当前风电场快速发展期迫切需要解决的问题。.本项目从风电场对系统安全性影响的概率性评价切入,建立风电场接入系统的充裕度模型和电压波动评估模型。将风电并网的控制设备、并网联络线的停运与风电场的充裕度模型统一考虑,突破风电场充裕度评估单节点模型的局限,使风电并网系统的充裕度评估更符合风电场的运行实际。计及风电系统所有可能的随机因素,研究风速变化引起的节点电压波动分布,分析因节点电压越限使风电机组停机的概率及不同节点对注入功率随机扰动的承受能力,进而研究消除波动的方法。.项目研究成果将为评价风电场的综合效益提供有效精确的定量评估手段,为风电场的规划和设计提供决策依据,对风电并网系统的安全可靠运行提供切实的技术支持。 2100433B
本书主要讲述风电场电气部分的系统构成和主要设备,包括与风电场电气相关的各主要内容。全书分为8章,主要内容为风电场电气系统的基本构成、主接线设计,风电场主要电气一次设备的结构、原理、型式参数及电气一次设备的选取,风电场电气二次系统、风电场的防雷和接地,风电场中的电力电子技术应用等。书中提供了大量的实物照片和结构示意图,使读者对电气设备有直观的感性认识。本书既可作为高等院校的教材,也可为风力发电领域的相关从业人员的培训及自学提供参考。