乏燃料溶解是乏燃料后处理首端过程中一个步骤,目前广泛应用的固体核燃料一般是制成元件的形式(外面是包壳,里面是燃料芯)。
中文名称 | 乏燃料溶解 | 一般是 | 制成元件的形式 |
---|---|---|---|
广泛应用 | 固体核燃料 | 技术难点 | 切割机 |
解 释 | 乏燃料后处理首端过程 |
切断后的元件和去壳后的的核燃料芯体一般用硝酸溶解,烧结的二氧化钚、钍和二氧化钍在硝酸中溶解缓慢,可以加入氟离子作催化剂,以便加快溶解过程,即使如此,氧化钍在硝酸中的溶解仍是缓慢的。对铀-铝合金元件可用硝酸溶解,但需以硝酸汞催化剂使铝溶解加快,亦可用氢氧化钠-硝酸钠溶液将铝溶去,再用硝酸的溶解铀。
乏燃料溶解包括两个部分:一是去壳;二是溶芯。对于生产堆元件国外均采用化学去壳法。对于铝合金壳均采用碱溶解的方法。
铝是一种两性金属,它既溶于酸,又能深于碱,而铀则不溶于碱。因此元件的铝包壳通常可用氢氧化钠溶解。铝壳与氢氧化钠发生如下反应:
2Al+2NaOH+2H2O→2NaAlO2+3H1↑
氢气与空气混合,在浓度为4-75%(体积)的范围内,达到燃点时可引起爆炸。为了保证过程的安全,需尽量减少反应产生的氢气量。在氢氧化钠溶液中加入适量的硝酸铀,可将上述反应生成的氢气抑制在最小值。其近似的总反应为:
Al+0.85NaOH+1.05NaNo3→NaAl2+0.9NaNo2+0.15NH3↑+0.2H2O
习惯上称氢氧化钠与硝酸钠的混合液为混合碱。它与铝壳反应生成的氨气与空气混合,在浓度为15.7-27.4%(体积)的范围内也有爆炸的危险,但爆炸限比氢气窄得多,因而较易控制。所以用碱深解铝壳时都加入硝酸钠。
先在溶解器内加一定量的润湿水(上一批元件去壳后的漂洗水),再加入元件和浓混合碱,通入稀释空气和搅拌空气,通过溶解器夹套用蒸汽加热升温至沸点。铝壳完全溶解所需的时间是通过实验确定的。溶壳完毕后,向溶解器夹套通入冷却水,待降至50℃后,将偏铝酸钠废液从溶解器中转出,并送至废水处理和贮存厂房。然后用去离子水漂洗铀芯,漂洗水抽出后留作下批元件去壳时的稀释水(即润湿水)。
包壳有铝包壳、不锈钢包壳、锆或锆合金包壳等;燃料芯的材料有铀燃料(金属铀,二氧化铀,铀合金,陶瓷体)、钚燃料、钍燃料等不同类型。对于不同的燃料芯,以及考虑到采用的化学分离过程中的特殊要求,所用的溶解方法也不相同。
处理的方式与铀燃料相似,先以机械方式切断燃料棒,再以浓硝酸溶解,惟金属钍在硝酸中呈“怠惰性”,故须添加小量HF,使之易于溶解,但氟离子易与铀及钍形成错化合物,影响萃取效果,且又引起强烈的腐蚀问题,解决...
钍燃料是指能制造可以能取代铀-235的核燃料铀-233的钍-232。钍资源中产量最多的矿物为独居石(monazite),一般钍含量为1~15%。首先将独居石以或氢氧化钠溶解,加以过滤、沉淀,再以硝酸溶...
核能发电目前是以铀-235为主要原料,铀含量高的矿藏正在急遽下降。能取代铀-235的核燃料之一是铀-233,但它在自然界并不存在,得要从钍-232来制造。核能发电是能源危机中的新宠,但由於核分裂反应器...