电压效率是电解反应的理论分解电压与电化学反应器工作电压之比。显然,电压效率的高低可以反映电极过程的可逆性,即通电后由于极化产生的过电压高低,也综合地反映了电化学反应器的性能优劣,即反应器各组成部分的欧姆压降。
一般说来,因为K值基本不变(除非原料及生成反应根本改变),影响直流电耗的主要是槽电压和电流效率,降低槽电压和提高电流效率是降低直流电耗的关键。
对于一个实际电池体系来说,除参与电池反应的电极活性物质外,还应包含许多其他结构材料,如导电剂、黏结剂、集流体、隔膜、外壳等,因此,电池的实际比能量往往大大低于其理论值。事实上,电池的实际比能量除受这一因素影响外,在很大程度上还受制于电池反应实际能达到的反应程度以及实际的可输出电压。上述影响因素分别称为电压效率(班)和质量效率(抽)、反应效率(聃)。
所谓电压效率是指电池的实际输出电压与电动势的比值。由于电动势只是从热力学角度考虑而获得的一个理论电压值,而电池的实际输出电压涉及反应体系的动力学性质,因此,后者低于前者,其比值小于1。电压降低的多少由电极反应的电化学极化、浓差极化及体系的欧姆极化所决定。其中,欧姆极化包含电池各部件之间的接触电阻、固相电阻以及电解质溶液的液相电阻等引起的极化。因此,要获得高的电压效率,必须选择具有高电化学活性的物质作为电极活性材料,并发展与之适配的具有高电导率特征的电解质体系,同时,尽量减小体系的固相电阻及接触电阻。所谓反应效率是指实际电池反应能进行的最大限度,也就是活性物质的利用率。导致电极活性物质利用率降低的原因主要有各种副反应的发生(如水溶液电池中的置换析氢反应)、电极表面钝化以及电极结构粉化等。因此,要提高电极材料的反应效率,必须避免和抑制上述现象的发生。例如,增大电极表面积、提高电极孔隙率或加入合适添加剂等以消除或延缓负极钝化。
电压损失=电压降电压损失:指电路中阻抗元件两端电压的数值差。在工程计算中,电压损失就等于电压降。电压降:当电流通过用电设备后(电阻),其设备两端产生的电位差(电势差)称其为电压降。在工程计算中,电压降...
不是电压,也称作电势差或电位差,是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作用从A点移动到B点所作的功,电压的方向规定为从高电位指向低电位的方向。电流通...
所谓升电压:就是用升压设备(如升压变压器)将电压升高的过程。所谓降电压:就是用降压设备(如降压变压器)将电压降低的过程。
电动机过负荷能力降低及某些重载负荷过电流等问题。但-5%范围内,一般不会出现这些问题。 电压变化在负载不同时对电机效率影响是不同的。在重载时提高电压在一定范围(从342伏提到380伏)可以提高效率,再提(412伏)则效率反而下降。但轻载时,电压从342伏上升则效率越来越低,如何调整线路电压及个别调整电机端电压力可以达到节能的效果。
三相电压不平衡时异步电动机运行损耗分析: 由于三相负载不对称,常常引起供电电压不平衡。这不平衡电压在异步电机中产生三相不平衡电流。用对称分量法可以分成正序、负序及零序电流。当定子绕组Y接时,则零序电流为零。其中正序电流产生转矩,使电机转运,负序电流产生一反转矩,使输出转矩有所减少,当电压不平衡值小于10%时,负转矩不大,一般可以不计。但对于负序磁场在转子中产生损耗以及定子电流由于不平衡而使损耗增加必须给予关注。一般电压不平衡时,其三相相位差不能保持120度,而相位变动后,产生的负序损耗及定子铜耗增加随电压不平衡度的增大而达到不允许的结果。因而保持供电电压平衡,可以节约电能。
各国对于电源频率允许偏差范围的规定是不同的。在实际正常运行中,日、美控制在±0.01周/秒,而我国许多缺电系统有时频率偏差超过±0.2周/秒。在电力系统网络化的今天,公共电源频率的稳定是有保证的。这里只需要考虑专用电源(比如变频电源)频率变化对电机损耗的影响。
对于风机泵类负载,由于轴转矩与转速的平方成正比变化,频率降低后,转速下降,转矩也下降,使定子及转子电流下降,因而电机效率有所提高,再加上轴功率有大幅度下降,电机输入功率同样大幅度下降,所以风机泵类负载采用变频调速,在低速时可获得好的节能效果。2100433B
电压与电压降是一个概念吗 ?有什么区别吗 一、电压简介电压( voltage),也称作电势差或电位差,是衡量单位电荷在静 电场中由于电势不同所产生的能量差的物理量。 其大小等于单位正电荷因受电场力作用从 A 点移动到 B点所做的功, 电压的方向规定为从高电位指向低电位的方向。 电压的国际单 位制为伏特( V,简称伏),常用的单位还有毫伏( mV)、微伏( μV)、千伏( kV)等。 此概念与水位高低所造成的“水压”相似。需要指出的是, “电压”一词一般只用于电路 当中,“电势差”和“电位差”则普遍应用于一切电现象当中。 电压分类:按大小分 电压可分为高电压,低电压和安全电压。 高低压的区别是:以电气设备的对地的电压值为依据的。对地电压高于或等于 1000 伏的 为高压。对地电压小于 1000伏的为低压。 其中安全电压指人体较长时间接触而不致发生触电危险的电压。按照国家标准 《GB3805-
冲击电压发生器输出电压幅值V2m与充电电压пV 之比称作发生器的效率η,即
η=(V2m /nV)×100%
对雷电冲击波,η一般约80%;对操作冲击波,η有时仅60%。
冲击电压波形参数T1(Tcr)、T2及发生器效率η与回路结构和参数有关,均需通过实际调试进行调整和确定。
对于电力变压器等带有绕组的电力设备,通常还要求做雷电冲击截波试验。冲击电压发生器外接一截断间隙即可产生冲击截波。标准雷电截波是标准雷电冲击波经过2~5μs截断的波形。
冲击电压发生器是高电压试验室的基本试验设备之一。目前中国已建的冲击电压发生器最高额定电压为6MV,有的国家个别的高达10MV。
效率与所取截面有关。取压缩机进口截面和出口截面来计算效率,则为压缩机的效率。如果不包括进出气管在内,取压缩机中第一级进口截面和末级出口截面计算效率,则为压缩机级组的效率。如果取压缩机的一个级的进口截面和出口截面计算效率,则为级的效率。 2100433B
功率效率ηP是指发光体输出的发射功率P0与输入的激发功率Pi(光功率、电子束功率、电注入功率等)之比:ηP=P0/Pi,是一个无量纲的小于1的常数。因为多数发光体用于显示和照明,其功能是用人眼衡量的,但人眼只感觉可见光,且对不同波长的灵敏度也很不相同。因此,发射光谱不同的发光体,即使它们有相同的功率效率,人眼所见的亮度也不同。要反映这样的差别可用光度效率η1,它是发光体的发光通量Ф(以流明为单位)和激发功率Pi之比,η1=Ф/Pi,单位为流明/瓦。
显然,如已知发光体的发射光谱,则功率效率与光度效率可以相互换算。
在对发光体的基础研究中,尤其对于光致发光及注入式电致发光体,常用量子效率ηq表征发光效率。量子效率是指发光体发射的光子数N0与激发时吸收的光子数或注入的电子(空穴)数Ni之比:ηq=N0/Ni,是一个无量纲的数值。
对于光致发光材料,当激发与发射均为单色光或接近单色光时,量子效率与功率效率可以通过表式。