《低压差线性稳压器应用技巧》是2009年 中国电力出版社出版的图书,作者是沙占友,郭立炜
书名 | 低压差线性稳压器应用技巧 | 作者 | 沙占友,郭立炜 |
---|---|---|---|
ISBN | 9787508376950 | 出版社 | 中国电力出版社 |
出版时间 | 2009-02-01 | 装帧 | 平装 |
开本 | 大32开 |
作 者: 沙占友,郭立炜 著
丛 书 名:新型稳压电源精品丛书出 版 社: 中国电力出版社ISBN:9787508376950出版时间:2009-02-01版 次:1页 数:314装 帧:平装开 本:大32开所属分类:图书 > 科技 > 一般工业技术
稳压器的一般原理 稳压器,顾名思义,就是使输出电压稳定的设备。所有的稳压器,都利用了相同的技术实现输出电压的稳定输出电压通过连接到误差放大器(Error Amplifier)...
稳压器是使输出电压稳定的设备。稳压器具备稳压恒压、控制电路、及伺服电机等组成。当输入电压或负载变化时,控制电路进行取样、比较、放大,然后驱动伺服电机转动,使调压器碳刷的位置改变,通过自动调整线圈匝数比...
《开关稳压器应用技巧》为“新型稳压电源精品丛书”的第1部,该丛书还包括《标准线性稳压器应用技巧》和《低压差线性稳压器应用技巧》。《开关稳压器应用技巧》题材新颖,内容丰富,图文并茂,具有科学性、先进性及...
30KVA线性稳压器设计
基于双极工艺的LDO线性稳压器的设计
前言
第一章低压差线性稳压器概述
第一节低压差线性稳压器的术语
第二节线性稳压器的原理及内部保护电路
一、线性稳压器的原理
二、线性稳压器的内部保护电路
第三节线性稳压器典型产品的原理及典型应用
一、三端固定式稳压器的原理及典型应用
二、三端可调式稳压器的原理及典型应用
第四节低压差线性稳压器的原理
一、PNP型低压差线性稳压器(LDO)的原理
二、准低压差线性稳压器(QLDO)的原理
三、超低压差线性稳压器(VLDO)的原理
第五节低压差线性稳压器的主要特点及产品分类
一、低压差线性稳压器的主要特点
二、低压差线性稳压器的产品分类
三、低压差线性稳压器与其他稳压器的性能比较
第六节低压差线性稳压器的应用领域及典型用法
一、低压差线性稳压器的应用领域
二、低压差线性稳压器的几种典型用法
第七节低压差线性稳压器的选择方法及使用注意事项
一、低压差线性稳压器的选择方法
二、低压差线性稳压器的使用注意事项
第八节低压差线性稳压器典型产品的主要技术指标
第二章低压差线性稳压器设计软件使用方法及设计实例
第一节低压差线性稳压器设计软件的分类
第二节LDO-It设计软件的工具栏及使用方法
一、LDO-It设计软件的工具栏
二、LDO-It设计软件的使用方法
第三节LDO-It设计软件的应用实例
第四节利用WEBENCH软件在线选择低压差线性稳压器的方法
第三章低压差线性稳压器的原理与应用
第一节LM1117型准低压差线性稳压器
一、LN1117型准低压差线性稳压器的原理
二、LM1117型准低压差线性稳压器的应用
第二节SPX1117型准低压差线性稳压器
一、SPX1117型准低压差线性稳压器的原理
二、SPX1117型准低压差线性稳压器的应用
第三节LP2950/2951型低压差线性稳压器
一、LP2950/2951型低压差线性稳压器的原理
二、LP2951型低压差线性稳压器的应用
第四节LM2990/2991型负压输出式低压差线性稳压器
一、LM2990/2991型低压差线性稳压器的原理
二、LM2990型低压差线性稳压器的应用
三、LM2991型低压差线性稳压器的应用
第五节MIC68200型具有排序与跟踪功能的低压差线性稳压器
一、MIC68200型低压差线性稳压器的原理
二、MIC68200型低压差线性稳压器的应用
第六节其他低压差线性稳压器的典型应用及使用技巧
一、LM2937型低压差线性稳压器的典型应用
二、MIC2941A型低压差线性稳压器的典型应用及使用技巧
三、NCV8675型低压差线性稳压器的典型应用
四、NCP1086型低压差线性稳压器的使用技巧
第四章超低压差线性稳压器的原理与应用
第一节TC10XX/20XX系列高精度超低压差线性稳压器
一、TC10XX/20XX系列超低压差线性稳压器的性能特点
二、TC10XX/20XX系列超低压差线性稳压器的原理与应用
三、使用注意事项
第二节MCP17XX/18XX系列高精度超低压差线性稳压器
一、MCP17XX/18XX系列超低压差线性稳压器的性能特点
二、MCP1700/1702超低压差线性稳压器的原理与应用
三、MCP1725/1726/1727/1827/1827S超低压差线性稳压器的原理与应用
第三节SP62XX系列超低压差线性稳压器
一、SP62XX系列超低压差线性稳压器的性能特点
二、SP6200/6201型超低压差线性稳压器的原理与应用
三、SP6203/6205型超低压差线性稳压器的原理与应用
第四节TPS73XX系列具有延时复位功能的超低压差线性稳压器
一、TPS73XX系列超低压差线性稳压器的性能特点
二、TPS73XX系列超低压差线性稳压器的原理
三、TPS73XX系列超低压差线性稳压器的典型应用
第五节MAX483X系列具有软启动功能的超低压差线性稳压器
一、MAX483XX系列超低压差线性稳压器的原理
二、MAX483XX系列超低压差线性稳压器的典型应用
第六节HT71XX/72XX系列高输入电压的超低压差线性稳压器
一、HT71XX/72XX系列超低压差线性稳压器的原理
二、HT71XX系列超低压差线性稳压器的应用技巧
第七节其他超低压差线性稳压器的原理与应用
一、MAX1735型超低压差线性稳压器的原理与应用
二、MAX5005型超低压差线性稳压器的原理与应用
三、LP38851型超低压差线性稳压器的应用
第五章多路输出式超低压差线性稳压器的原理与应用
第一节双路输出式超低压差线性稳压器
一、TC1301/1302系列双路输出式VLDO的原理
二、TC1301/1302系列双路输出式VLDO的典型应用
第二节三路输出式超低压差线性稳压器
一、MIC2215型三路输出式VLDO的原理
二、MIC2215型三路输出式VLDO的典型应用
第三节一次性可编程四路输出式超低压差线性稳压器
一、AS1352型可编程四路输出式VLDO的原理
二、AS1352型可编程四路输出式VLDO的典型应用
第四节带串行接口的可编程五路输出式超低压差线性稳压器
一、MAX1798/1799型带串行接口的五路输出式VLDO的原理
二、MAX1798/1799在CDMA数字移动电话中的应用
三、MAX1799的评估板及专用工具软件
第五节其他多路输出式低压差、超低压差线性稳压器的原理与应用
一、LM2935型双路输出式LDO的原理与应用
二、CAT6221型双路输出式VLDO的原理与应用
三、LP2966型双路输出式VLDO的原理与应用
四、R5320X系列三路输出式VLDO的原理与应用
第六章大电流输出式低压差线性稳压器的原理与应用
第一节1.5A低压差、超低压差线性稳压器
一、MSK5101型1.5A大电流LDO的原理与应用
二、LTC3026型升压变换式1.5A大电流VLDO的原理与应用
第二节3A低压差、超低压差线性稳压器
一、LP38501-ADJ/38503-ADJ型3A大电流VLDO的原理与应用
二、SPX1582型3A大电流LDO的原理与应用
第三节适用于USB系统的3A低压差线性稳压器
一、MIC29311型3A大电流LDO的原理
二、MIC29311型3A大电流LDO的典型应用
第四节5A低压差线性稳压器
一、LMS1585A型5A大电流LD0的典型应用
二、DF1084型5A大电流LDO的典型应用
三、SPX1585型5A大电流LDO的典型应用
第五节7.5A/8A低压差线性稳压器
一、MIC2971X/2975X系列7.5A大电流LDO的原理与应用
二、SPX1584型8A大电流LDO的典型应用
第七章特种低压差线性稳压器的原理与应用
第一节高压输入式低压差线性稳压器
一、MAX8718/8719型28v高压输入式LDO的原理与应用
二、LT3012/3014型80V高压输入式LDO的原理与应用
第二节具有峰值电流输出能力的低压差线性稳压器
一、MIC5216型具有峰值输出能力的LD0的原理与应用
二、峰值电流输出的应用实例
第三节单路输出式低压差和超低压差线性稳压控制器
一、LT1123型低压差线性稳压控制器的原理与应用
二、MIC5156型超低压差线性稳压控制器的原理与应用
第四节多路输出式超低压差线性稳压控制器
一、MAX8563/8564型超低压差线性稳压控制器的原理
二、MAX8563/8564型超低压差线性稳压控制器的典型应用
第五节带DC/DC变换器的复合式低压差和超低压差线性稳压器
一、LTC3448型复合式低压差线性稳压器的原理与应用
二、TC1304型复合式超低压差线性稳压器的原理与应用
第六节带超低压差线性稳压器的可编程锂离子电池充电器
一、带vIDO的可编程锂离子电池充电器的原理
二、带VLDO的可编程锂离子电池充电器的典型应用
第七节LM2984/2984C型基于LDO的微处理器电源系统
一、LM2984/2984C型微处理器电源系统的原理
二、LM2984/2984C型微处理器电源系统的典型应用
第八章低压差线性稳压器的电路设计
第一节低压差线性稳压器的设计要点
一、低压差线性稳压器的基本类型
二、低压差线性稳压器电路设计要点
三、低压差线性稳压器的布局
四、低压差线性稳压器及散热器的装配技术
第二节低压差线性稳压器关键外围元器件的选择
一、输入电容器、输出电容器及旁路电容器的选择
二、外部取样电阻及电流检测电阻的选择
三、外部功率MOSFET的选择
四、低压差线性稳压器封装形式的选择
第三节低压差线性稳压器常见故障分析
一、低压差线性稳压器常见故障一览表
二、低压差线性稳压器常见故障分析
第四节提高低压差线性稳压器输出电压精度的方法
一、影响LDO输出电压精度的主要因素
二、提高LDO输出电压精度的方法
第五节减小浪涌电流及改善瞬态响应的方法
一、减小LDO浪涌电流的方法
二、改善LDO瞬态响应的方法
三、LDO瞬态响应的测试方法
第六节可编程低压差线性稳压器的电路设计
一、数字电位器的原理
二、可编程低压差线性稳压器的电路设计
第九章低压差线性稳压器的使用技巧
第一节提高低压差线性稳压器输入电压的方法
第二节利用外部双极型晶体管扩展LDO负载电流的方法
一、MAX8863型超低压差线性稳压器的原理与应用
二、利用晶体管扩展MAX8863负载电流的方法
第三节利用外部场效应晶体管扩展LDO负载电流的方法
一、MIC5158型低压差线性稳压控制器的基本应用
二、利用场效应晶体管扩展MIC5158负载电流的方法
第四节低压差线性稳压器的并联使用方法
第五节能从零伏起调的低压差线性稳压器应用电路
一、可调式低压差线性稳压器的典型应用电路
二、能实现低压差线性稳压器从零伏起调的两种方法
第六节由低压差线性稳压器构成恒流源的方法
一、由低压差线性稳压器构成的简易恒流源
二、由超低压差线性稳压控制器构成的恒流源
第十章低压差线性稳压器的应用实例
第一节低压差线性稳压器在计算机电源中的应用
一、对计算机电源的设计要求
二、5V/3.3V低压差电源变换器的设计方案
三、获取其他输出电压标称值的简便方法
四、多路输出式低压差线性稳压器的设计方案
第二节低压差线性稳压器在便携式电子产品中的应用
一、对便携式电子产品电源的设计要求
二、减小低压差线性稳压器互相干扰的方法
第三节低压差线性稳压器在精密数控基准电压源中的应用
一、MAX5130A的原理
二、精密数控基准电压源的电路设计
第十一章低压差线性稳压器的散热器设计
第一节散热器的基本工作原理与安装方法
一、LD0的工作寿命与最高结温的关系
二、散热器的基本工作原理
三、塑料封装式LDO的散热器安装方法
第二节平板式散热器的设计
一、平板式散热器的设计方法
二、印制板式散热器的设计方法
第三节成品散热器的热参数与热参数计算
一、成品散热器的热参数
二、成品散热器的热参数计算
第四节大电流输出式LDO的散热器设计
一、大电流输出式LDO的散热曲线图
二、大电流输出式LDO的散热器设计示例
第五节在风冷条件下的散热器设计
一、在风冷条件下的散热器选择
二、散热器的特性曲线
三、利用功率分配电阻来减小散热器尺寸的方法
第六节不同封装的LDO散热器设计实例
第七节多片LDO并联使用散热器的设计实例
第八节设计散热器的常用工具软件
一、设计线性稳压器散热器的通用工具软件
二、设计低压差线性稳压器散热器的专用工具软件
参考文献
本书是国内第一部专门介绍低压差、超低压差线性稳压器设计的著作,详细阐述了低压差线性稳压器计算机辅助设计软件的新技术和新成果。全书以硬件电路为主、软件为辅,结构严谨,条理清晰,逻辑性强。内容由浅入深,循序渐进,首先介绍各种LDO、VLD0的工作原理与典型应用,然后重点阐述其电路设计、使用技巧及应用实例,最后详细介绍LDO散热器的设计方法,可满足初学者和专业技术人员的不同需要。各章之间保持相对的独立性,读者既可通读全书,亦可选读部分章节的内容。
本书全面系统深入地阐述了低压差和超低压差线性稳压器的原理、应用及专用工具软件。全书共十一章。第一章为低压差线性稳压器概述。第二章介绍低压差线性稳压器设计软件的使用方法及设计实例。第三、四章分别介绍了准低压差、低压差和超低压差线性稳压器的原理与应用。第五一七章分别阐述多路输出式、大电流输出式及特种低压差线性稳压器的原理与应用。第八-十章重点阐述低压差和超低压差线性稳压器的电路设计、使用技巧及应用实例。第十一章专门介绍低压差线性稳压器的散热器设计。所介绍的低压差和超低压差线性稳压器达几百种。这是国内第一部专门介绍低压差线性稳压器的科技书,它充分反映了该领域的国内外最新应用成果。
本书题材新颖,内容丰富,图文并茂,具有科学性、先进性及很高的实用价值,可供各类电子技术人员、高校师生和电子爱好者阅读。
低压差线性稳压器的输出噪声受其内部设计和外部旁路、补偿电路的影响。图3是低压差线性稳压器的简单结构框图。由图可知,低压差线性稳压器输出噪声的主要来源是基准电路(voltage reference)模块,其产生的基准噪声在输出端被放大。此外,影响低压差线性稳压器输出噪声的其他因素还有:低压差线性稳压器内部放大器的极点、零点和输出极点,外部输出电容的容值和输出电容的等效串联电阻(esr)值,以及负载值。 图3 低压差线性稳压器简单结构 降低输出噪声的方法 ● bp 端加旁路电容 为降低基准噪声,需要在基准的输出端增加一路低通滤波器,滤波器可以集成在低压差线性稳压器内部或由外部电路实现。但内置滤波器占用了较大的管芯尺寸,增加了芯片的设计和生产成本。为此,有些低噪声低压差线性稳压器芯片只是提供一个基准的引脚bp(bypass),用于连接基准旁路电容。 连接基准旁路电容可降低基准噪声,使基准噪声成为产生低压差线性稳压器输出噪声的次要因素。建议使用典型值为 470pf~0.01μf的陶瓷电容,也可使用此范围以外的电容,但会对输入电源上电时低压差线性稳压器 输出电压上升的速度产生影响。旁路电容值越大,输出电压上升速率越慢。在使用时要注意这点。 图4为旁路电容对sg2001输出噪声的影响。由图可见,随着旁路电容的增大,输出噪声也会有一定程度的减少。 图4 旁路电容对sg2001输出噪声的影响 ● 减小低压差线性稳压器的负载电流。 负载电流也会在一定程度上影响低压差线性稳压器的输出噪声。图5为负载电流对sgm2007输出噪声影响。由图可见,随着负载电流的增大,输出噪声也会有一定的增加。为了减小负载电流对低压差线性稳压器输出噪声的影响,要尽量选择输出电流大的低压差线性稳压器。 图5 负载电流对低压差线性稳压器噪声的影响 ● 增大低压差线性稳压器的输出电容 低压差线性稳压器需要连接外部输入和输出电容器。利用较低esr的大电容器一般可以全面提高电源抑制比(psrr)、噪声以及瞬态性能。陶瓷电容器通常是首选,因为其价格低且故障模式是断路模式。此外,输出电容器的等效串联电阻(esr)也会影响其稳定性。陶瓷电容器具有较低的esr,大概为10 mΩ量级。