本书总结了近年来备受关注的地下水可渗透反应墙修复技术的发展历程。系统介绍了该技术的基本原理、典型结构、修复填料的选择及修复机理等。详细阐述了该技术的工程设计流程,如安装条件、施工工艺、后期性能监测、评价及维护等。最后,列举了国内外典型的地下水可渗透反应墙修复技术案例。以期为可渗透反应墙修复技术在我国的发展和普及做出贡献。
前言
第一章绪论
第二章PRB典型结构
第三章PRB技术修复填料及修复机理
第四章PRB系统设计
第五章PRB安装条件及施工工艺
第六章PRB性能监测、评价及维护
第七章PRB技术案例分析
结语 2100433B
陶瓷餐具看是出了什么问题,估计多半是破碎。陶瓷的现代修复一般都是以树脂胶为主,有一定的毒性,不建议修复后再使用,另外修复的成本远远高于陶瓷餐具的成本,一般来说如果是老东西还算是有修复的价值。
陶瓷餐具看是出了什么问题,估计多半是破碎。陶瓷的现代修复一般都是以树脂胶为主,有一定的毒性,不建议修复后再使用,另外修复的成本远远高于陶瓷餐具的成本,一般来说如果是老东西还算是有修复的价值。
东营东和管道,专业从事管道修复,具体可以去网站看看
针对受低浓度氨氮污染的地下水,实验筛选组合了不同的反应介质,利用串联的多介质填充柱模拟渗透反应格栅,通过物理吸附及生物硝化-反硝化作用来实现氮的去除。结果表明,在进水氨氮浓度为10 mg/L、流速为0.5 m/d的条件下,模拟柱对氨氮的去除率达到98%以上,且不会出现亚硝酸盐及硝酸盐浓度的升高。水体经过释氧柱后溶解氧由2mg/L升高至10 mg/L以上,表明释氧材料可提供硝化细菌所需的好氧环境。好氧柱中填充易于生物挂膜的生物陶粒及对氨氮有较强吸附能力的沸石,二者联用通过生物硝化-物理吸附协同作用实现对氨氮的去除,其中生物作用实现的氨氮去除量占总去除量的50%左右。后续厌氧反应柱填充海绵铁除氧并利用松树皮颗粒作为碳源,创造反硝化菌生长条件,硝酸盐氮浓度可由10 mg/L降低至5 mg/L以下,实现对好氧反应阶段所产生的硝酸盐的去除,避免了地下水的二次污染。
近年来,渗透反应格栅(permeable reactive barrier,PRB)作为一种原位、经济、被动修复技术在地下水污染防治中被广泛研究与实践。文章结合PRB国内外研究情况,通过对PRB原理、修复方法、研究难点等方面综合分析,阐述了PRB修复技术在石油类污染地下水治理方面的研究方向和发展趋势。由于PRB技术处理效果好、安置简单、运行成本低、不占用地面空间的特点,因此该技术具有广阔应用价值和市场发展前景。
前言
电动-可渗透反应墙(EKR-PRB)耦合技术,结合了电动修复(Electrokinetic Remediation,EKR)和渗透反应墙(Permeable reactive barrier,PRB)技术两者的优点,是近年新兴的一类原位污染场地修复技术,在污染场地土壤和地下水修复中有着良好的应用前景。
01EKR-PRB与其他修复技术的应用比较
不同场地修复技术有不同的修复范围和优势,修复技术的选择是决定污染场地修复成败的关键环节。修复技术的筛选不仅取决于场地污染特征,还受经济、社会等多因素制约。
表1为EKR-PRB修复技术与其它常用土壤修复技术的应用比较。与其他常见场地修复技术相比,电动修复技术特别适用于面积小、污染物类型多样、污染重、深度数米和要求快速处理的场地污染土壤的修复。
在欧洲已有超过75个场地采用电动联用其他修复技术成功地去除土壤和地下水的重金属和有机污染物,在美国1987年受超级基金的支持,就有超过10个场地采用了电动联用其他修复技术修复污染土壤和地下水。在韩国京畿道区域某垃圾填埋场,应用EKR-PRB技术针对含氯有机物和砷土壤污染进行了工程修复,修复50 h后氯离子和砷含量大大降低,该工程采用二维电极方式,电压梯度控制在1 V/cm,并在地下水面3 m处设置PRB反应墙,其填充介质为CaO、FeO、 Fe2O3 。
02结论与展望
场地土壤污染是当今世界十分关注的环境科学问题,更是我国亟待解决的问题。EKR-PRB联合修复技术作为一个新兴高效的原位修复技术,结合了EKR和PRB两种技术的优点,适用范围广。目前在实验室模拟阶段取得了良好的处理效果,但在场地修复工程应用仍较为缺乏,EKR-PRB技术还存在一些问题有待进一步深入研究。
1) 在电动力环境下,PRB去除土壤污染的机理需要进一步研究。污染物质在电动力驱动下向阴阳两极迁移过程中经过PRB时有两种可能的去除机理,一种机理是污染物被墙体中的材料所吸附而去除;另一种机理是污染物与PRB中的材料发生氧化还原反应进而被去除。到底哪种机理起主导作用,目前还缺乏深入研究。
2)EKR-PRB填充材料目前大多以具有还原性质的零价铁粉,铁粉的粒度已达到纳米级。零价纳米级铁粉成本高,实际应用成本较高,能否探寻或研制出其它效果好、价格低、易获得的物质,如废铁矿等来代替纳米级零价铁,有待于进一步的研究。
3) 在修复运行过程中,存在电场极化现象;除此外,在电场的作用下,可能产生有害副产物(如氯气,三氯甲烷、丙酮等),亟待在修复理论和实践中进一步解决。
-END-
来源:环境工程
编辑:滕飞达
《活性渗滤墙技术与地下水污染修复》在系统梳理国内外最新研究成果及工程实践的基础上,结合笔者多年的科研成果,从活性渗滤墙的结构与设计、填料、运行与评价、在地下水污染修复中的应用、经济分析、发展等七个方面全面阐述了活性渗滤墙技术的应用研究发展状况,尤其是在地下水污染修复中的应用现状及前景。
程荣(1981-),女,汉族,工学博士(后),现为中国人民大学环境学院讲师、硕士生导师。先后于清华大学获得环境工程学士、环境科学与工程博士学位,清华大学博士后。主要从事水污染控制技术以及环境纳米技术研究。2008年获清华大学优秀博士学位论文;2009年获得中国博士后科学基金面上一等资助。目前主持国家自然科学基金1项,已主持完成北京市自然科学基金、中国博士后科学基金、中央高校基本科研基金支持项目等,参与国家科技重大专项、“863”计划等多项课题。在国内外学术期刊上发表科研论文30余篇,其中SCI收录11篇,日收录10篇;申请发明专利5项,已授权4。
《BIM技术原理及应用》是一本2019年02月山东科学技术出版社出版的图书,作者是张雷,董文祥。