可以直接套用,但是主材需要找差,也就是你说的那个文化砖,不论是比定额中的价格高还是底都要找差价的。 投标的时候
储能是电器合闸时的动力,只有储能了,才能合上闸,合闸前先储能
动力系统;通常把发电企业的动力设施、设备和发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能热能生产、输送、分配、使用的统一整体称为动力系统; 电力系统:通常把发电、输电、变电、配电、用电设备...
储能是未来高比例可再生能源系统的关键支撑技术之一,科学的评价方法是衡量其价值的重要依据。首先,提出储能的系统价值评估方法,全面分析其在电力系统中的价值构成,包括直接价值和间接价值。并给出储能多重应用的协同效应矩阵,分析储能系统价值的特征,全面评估和衡量储能的多重应用价值。然后,建立储能同时应用在削峰填谷、平滑可再生能源和提高供电可靠性的多重价值评估模型,以设备使用率、静态投资回收期和盈利能力指数作为储能的系统价值评估指标。最后,以Garver 6节点测试系统作为算例,计算不同容量配置下储能的系统价值,验证系统价值评估方法的正确性和有效性。
数字化变电站文献综述 0前言 由于传统变电站具有功能重复, 缺乏统一化设计, 对变电站综合自动化系统 的工程设计缺乏规范性要求 (尤其是系统各部分接口的通信规约 )等缺点,鱼待需 要解决,数字化变电站应运而生, 数字化变电站是以变电站一、 二次设备为数字 化对象,以高速网络通信平台为基础, 通过对数字化信息进行标准化, 实现信息 共享和互操作,并以网络数据为基础,实现继电保护、数据管理等功能,满足安 全稳定、建设经济等现代化建设要求的变电站。 所谓数字化变电站就是使变电站的所有信息采集、传输、处理、输出过程 由过去的模拟信息全部转换为数字信息,并建立与之相适应的通信网络和系统。 作为一门新兴技术, 数字化变电站从提出开始就受到了极大的关注, 目前已成为 我国电力系统研究的热点之一。 随着相关软硬件技术的不断发展和成熟, 数字化 变电站将成为变电站技术的发展方向。 1实现数字化变电站的意义
本书主要讨论储能技术在电力系统中的具体应用,详细介绍了各种储能技术的基本原理及具体示例、储能对电力系统的影响,并对各种储能技术的特点进行了分析,重点关注了可再生能源与储能之间的关系。本书适合从事电力系统储能技术研究的科研工作人员或企业研发人员阅读。
译者序
原书前言
致谢
引言
第一部分 储能应用
第1章 电力系统的发展趋势
第2章 作为电力系统结构单元的储能装置
第3章 储能技术的应用
第二部分 储能技术
第4章 热能储存
第5章 飞轮储能
第6章 抽水蓄能
第7章 压缩空气储能
第8章 氢气与其他合成燃料储能
第9章 电化学储能
第10章 电容器储能
第11章 超导磁储能
第12章 电力系统自身储能
第13章 储能系统选择注意事项
第三部分 电力系统储能注意事项
第14章 储能系统集成
第15章 储能对电力系统瞬态的影响
第16章 电力系统储能优化机制
第17章 储能与可再生能源
结论
参考文献 2100433B
电磁储能包括:超导储能、电容储能、超级电容器储能。
1、超导储能
超导储能系统(SMES)利用超导体制成的线圈储存磁场能量,功率输送时无需能源形式的转换,具有响应速度快(ms 级),转换效率高(≥96%)、比容量(1-10 Wh/kg)/比功率(104-105kW/kg)大等优点,可以实现与电力系统的实时大容量能量交换和功率补偿。SMES 可以充分满足输配电网电压支撑、功率补偿、频率调节、提高系统稳定性和功率输送能力的要求。
2、超级电容器储能
超级电容器根据电化学双电层理论研制而成,可提供强大的脉冲功率,充电时处于理想极化状态的电极表面,电荷将吸引周围电解质溶液中的异性离子,使其附于电极表面,形成双电荷层,构成双电层电容。电力系统中多用于短时间、大功率的负载平滑和电能质量峰值功率场合,如大功率直流电机的启动支撑、态电压恢复器等,在电压跌落和瞬态干扰期间提高供电水平。