电介质电导依靠少量的传导电子、传导空穴和离子在外电场作用下定向迁移来实现。
电介质的电导依靠少量的传导电子、传导空穴和离子在外电场作用下定向迁移来实现。气体电介质中通常存在微量离子和自由电子,电导很小,是良好的绝缘体。但在强电场作用下出现碰撞电离时气体的电导会急剧上升乃至击穿。液体电介质如变压器油和硅油等,在弱电场下的电导主要由离子和带电的胶粒提供。这些离子和胶粒主要来源于杂质。利用白土、硅胶进行吸附杂质的处理能明显降低其电导率。在强电场下,由于电极上的电子的场致发射和液体分子本身的电离,出现明显的电子导电。
固体电介质如碱卤晶体、石英、陶瓷、塑料等,在常态下多为离子导电。在离子晶体中,例如NaCl,并非晶体阵点上所有的离子都直接参与导电。而只是少数脱离点阵的活化离子和点阵空位参与导电。因此其电导率与晶体的缺陷密切有关。
固体电介质的传导电子和空穴导电的机理和半导体相同(见半导体物理学)。从能带结构来看,半导体的禁带较窄,容易受热激发产生传导电子和空穴。而电介质的禁带较宽,常温下几乎所有电子均处于满带,故电导率很小。但是在足够高的温度下,电介质可以成为半导体,也可能有明显的导电。
近年发现有些电介质具有铁电半导体性质,在较低温度下同时具有铁电性和不太小的电导率,可以用来作为发热器的电阻材料。当铁电半导体的温度升高达到铁电居里点时,铁电性消失而转变为顺电性。在相变的同时能带结构发生变化,使得在高温顺电相下成为绝缘体。由铁电相向顺电相转变时,这种电介质的电导率可以突然降低两、三个数量级。因此铁电半导体可以同时作为加热器和自动恒温器,能使加热设备的温度自动保持在居里点附近。2100433B
不是的,介电强度检测在运行中,绝缘油由于受到氧气、高温度、高湿度、阳光、强电场和杂质的作用,性能会逐渐变坏,致使它不能充分发挥绝缘作用,为此必须定期地对绝缘油进行有关试验,以鉴定其性能是否变坏。绝缘油...
反正只要不导电或者在一定范围内不导电的物质都可以做电介质
可以,但最好还是按设计要求,如没有找设计院或监理找出依据,不然会找麻烦
气体电介质中通常存在微量离子和自由电子,电导很小,是良好的绝缘体。但在强电场作用下出现碰撞电离时气体的电导会急剧上升乃至击穿。液体电介质如变压器油和硅油等,在弱电场下的电导主要由离子和带电的胶粒提供。这些离子和胶粒主要来源于杂质。利用白土、硅胶进行吸附杂质的处理能明显降低其电导率。在强电场下,由于电极上的电子的场致发射和液体分子本身的电离,出现明显的电子导电。
陈季丹、刘子玉主编:《电介质物理》,机械工业出版社,北京,1980。
固体电介质如碱卤晶体、石英、陶瓷、塑料等,在常态下多为离子导电。在离子晶体中,例如NaCl,并非晶体阵点上所有的离子都直接参与导电。而只是少数脱离点阵的活化离子和点阵空位参与导电。因此其电导率与晶体的缺陷密切有关。
固体电介质的传导电子和空穴导电的机理和半导体相同(见半导体物理学)。从能带结构来看,半导体的禁带较窄,容易受热激发产生传导电子和空穴。而电介质的禁带较宽,常温下几乎所有电子均处于满带,故电导率很小。但是在足够高的温度下,电介质可以成为半导体,也可能有明显的导电。
聚酰亚胺研究发展应用 1介绍 英文名: Polyimide 简称: PI 聚酰亚胺是指主链上含有酰亚胺环( -CO-N-CO- )的一类 聚合物 ,其中以含有 酞酰亚胺 结构 的聚合物最为重要。聚酰亚胺作为一种特种 工程材料 ,已广泛应用在 航空、航天、微电子 、 纳米、液晶、分离膜 、激光等领域。 近来,各国都在将聚酰亚胺的研究、 开发及利用列入 21 世纪最有希望的 工程塑料 之一。聚酰亚胺, 因其在性能和合成方面的突出特点, 不论是作为 结构材料 或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是 "解决问 题的能手 "( protion solver ),并认为 "没有聚酰亚胺就不会有今天的微电子技术 "。 近年来 ,随着集成电路的集成度的不断提高 ,互连中的电阻、电容 (RC)延迟产 生的寄生效应越来越明显 ,直接影响器件的性能。普通聚酰亚胺 (介电常数在 3.2~